Namespaces
Variants
Actions

Borcherds Lie algebra

From Encyclopedia of Mathematics
Jump to: navigation, search


Borcherds algebra

While a Kac–Moody algebra is generated in a fairly simple way from copies of , a Borcherds or generalized Kac–Moody algebra [a1], [a7], [a9], [a11] can also involve copies of the 3-dimensional Heisenberg algebra. Nevertheless, it inherits many of the Kac–Moody properties. Borcherds algebras played a key role in the proof of the Monstrous Moonshine conjectures [a4], and also led to the development of a theory of automorphic products [a5].

First recall the definition of a Kac–Moody algebra. By a (symmetrizable) Cartan matrix A = ( a _ { ij} ), one means an integral ( \text{l} \times \text{l} )-matrix obeying

C1) a _ { i i } = 2 and a _ { i j } \leq 0 for all i \neq j; and

C2) there is a diagonal matrix D with each d_{ ii} > 0 such that D A is symmetric. A (symmetrizable) Kac–Moody algebra \mathfrak { g } = \mathfrak { g } ( A ) [a10], [a12] is the Lie algebra on 3\text{l} generators e _ { i } , f _ { i } , h _ { i }, obeying the relations:

R1) [ e _ { i } f _ { j } ] = \delta _ { i j } h _ { i }, [ h _ { i } e _ { j } ] = a _ { ij } e _ { j }, [ h _ { i } f _ { j } ] = - a _ { ij } f _ { j }, and [ h _ { i } h _ { j } ] = 0, for all i , j; and

R2) \operatorname{ad}(e_i)^{1-\alpha_{ij}} (e_j)=0 and \operatorname{ad}(f_i)^{1-\alpha_{ij}} (f_j)=0 for all i \neq j.

A Borcherds algebra is defined similarly. By a generalized Cartan matrix A one means a (possibly infinite) matrix A = ( a _ { ij} ), a _ { i j } \in \mathbf{R}, obeying

GC1) either a _ { i i } = 2 or a _ { i i } \leq 0;

GC2) a _ { i j } \leq 0 for i \neq j, and a _ { i j } \in \mathbf{Z} when a _ { i i } = 2; and

GC3) there is a diagonal matrix D with each d_{ ii} > 0 such that D A is symmetric. By the (symmetrizable) universal Borcherds algebra \hat { \mathfrak { g } } = \hat{\mathfrak { g } }( A ) one means the Lie algebra (over \mathbf{R} say) with generators e _ { i } , f _ { i } , h _ { i j }, subject to the relations [a3]:

GR1) [ e _ { i } f _ { j } ] = h _ { i j}, [ h _ { i j } e _ { k } ] = \delta _ { i j } a _ { i k } e _ { k } and [ h _ { i j } f _ { k } ] = - \delta _ { i j } a _ { i k } f _ { k }, for all i , j;

GR2) \operatorname{ad}(e_i)^{1-\alpha_{ij}} (e_j)=0 and \operatorname{ad}(f_i)^{1-\alpha_{ij}} (f_j)=0, whenever both a _ { i i } = 2 and i \neq j; and

GR3) [ e _ { i } e _ { j } ] = [ f _ { i } f _ { j } ] = 0 whenever a _ { i j } = 0.

Note that for each i, \operatorname { span } \{ e _ { i } , f _ { i } , h _ { i i } \} is isomorphic to \operatorname{sl} _ { 2 } ( {\bf R} ) when a _ { i i } \neq 0, and to the 3-dimensional Heisenberg algebra when a _ { i i } = 0. Immediate consequences of the definition are that:

i) [ h _ { i j } , h _ { m n } ] = 0;

ii) h _ { i j } = 0 unless the ith and jth column of A are identical;

iii) the h _ { i j } for i \neq j lie in the centre of \hat { \mathfrak{g} }. Setting all h _ { i j } = 0 for i \neq j gives the definition of the (symmetrizable) Borcherds algebra \mathfrak { g } = \mathfrak { g } ( A ) [a1]. This central extension \hat { \mathfrak{g} } of \frak g is introduced for its role in the characterization of Borcherds algebras below. If A has no zero columns, then \hat { \mathfrak{g} } equals its own universal central extension [a3]. An important technical point is that both \mathfrak { g } ( A ) and \hat { \mathfrak { g } } ( A ) have trivial radical.

The basic structure theorem [a1] is that of Kac–Moody algebras. Let \mathfrak { g } = \mathfrak { g } ( A ) be a symmetrizable Borcherds algebra. Then:

a) \frak g has triangular decomposition \mathfrak { g } = \mathfrak { g } _ { + } \oplus \mathfrak { h } \oplus \mathfrak { g } _ { - }, where \mathfrak { g }_{ +} is the subalgebra generated by the e _ { i }, \mathfrak{g}_{-} is generated by the f_i, and \mathfrak { h } = \operatorname { span } \{ h _ { i } \} is the Cartan subalgebra. Also, [ \mathfrak { g } _ { + } , \mathfrak { g } _ { - } ] \subset \mathfrak { h } and [ \mathfrak { h } , \mathfrak { g } _ { \pm } ] \subset \mathfrak { g } _ { \pm }.

b) \frak g has a root space decomposition: formally calling e_i degree \alpha_i and f_i degree -\alpha_{i}, and defining \mathfrak { g } ^ { \alpha } to be the subspace of degree \alpha \in \mathbf{Z} \alpha _ { 1 } + \mathbf{Z} \alpha _ { 2 } + \dots, one gets \mathfrak { h } = \mathfrak { g } ^ { 0 } and \mathfrak { g } _ { \pm } = \oplus _ { \alpha \in \Delta _ { \pm } } \mathfrak { g } ^ { \alpha }, where [ \mathfrak { g } ^ { \alpha } , \mathfrak { g } ^ { \beta } ] \subset \mathfrak { g } ^ { \alpha + \beta} and \Delta _ { - } = - \Delta _ { + };

c) there is an involution \omega on \frak g for which \omega e _ { i } = f _ { i }, \omega h _ { i } = - h_i, and \omega \mathfrak { g } ^ { \alpha } = \mathfrak { g } ^ { - \alpha};

d) \operatorname{ dim} \mathfrak { g } ^ { \alpha } < \infty and \operatorname { dim } \mathfrak { g } ^ { \pm \alpha _ { i }} = 1;

e) there is an invariant symmetric bilinear form ( . | . ) on \frak g such that for each root \alpha \neq 0, the restriction of ( . | . ) to \mathfrak { g } ^ { \alpha } \times \mathfrak { g } ^ { - \alpha } is non-degenerate, and ( \mathfrak { g } ^ { \alpha } | \mathfrak { g } ^ { \beta } ) = 0 whenever \beta \neq - \alpha;

f) there is a linear assignment \alpha \mapsto x _ { \alpha } \in \mathfrak{h} such that for all a \in \mathfrak { g } ^ { \alpha }, b \in \mathfrak { g } ^ { - \alpha }, one has [ a , b ] = ( a | b ) x _ { \alpha }.

The condition that \frak g be symmetrizable (i.e. condition GC3)) is necessary for the existence of the bilinear form in e). For representation theory it is common to add derivations, so that the roots \alpha will lie in a dual space {\frak h} ^ { e ^ { * } }. In particular, define D _ { i } ( a ) = n _ { i } a for any a \in \mathfrak { g } ^ { n_1 \alpha _ { 1 } + \ldots }; then each linear mapping D_i is a derivation, and adjoining these to \mathfrak h defines an Abelian algebra \mathfrak{h} ^ {e }. The simple root \alpha_i can be interpreted as the element of {\frak h} ^ { e ^ { * } } obeying \alpha _ { j } ( h _ { i } ) = a _ {i j } and \alpha _ { j } ( D _ { i } ) = \delta _ { i j }. Construct the induced bilinear form ( . | . ) on {\frak h} ^ { e ^ { * } }, obeying ( \alpha _ { i } | \alpha _ { j } ) = d _ { i } a _ {i j }.

The properties a)–f) characterize Borcherds algebras. Let G be a Lie algebra (over \mathbf{R}) satisfying the following conditions:

1) G has a \mathbf{Z}-grading \oplus _ { i } G_ {i} (cf. also Lie algebra, graded), and \operatorname{dim} G _ { i } < \infty for all i \neq 0;

2) G has an involution \omega sending G_i to G_{ - i} and acting as - 1 on G_0;

3) G has an invariant bilinear form ( . | . ) invariant under \omega such that ( G _ { i } | G _ { j } ) = 0 if i \neq - j, and such that - ( a | \omega ( a ) ) > 0 if 0 \neq a \in G _ { i } for i \neq 0. Then there is a homomorphism \pi from some \hat { \mathfrak { g } } ( A ) to G whose kernel is contained in the centre of \hat { \mathfrak{g} }, and G is the semi-direct product of the image of \pi with a subalgebra of the Abelian subalgebra G_0. That is, G is obtained from \hat { \mathfrak{g} } by modding out some of the centre and adding some commuting derivations. See e.g. [a4] for details.

Define \Pi ^ { \text { re } } to be the set of all real simple roots, i.e. all \alpha_i with a _ { i i } = 2; the remaining simple roots are the imaginary simple roots \alpha \in \Pi ^ { \operatorname {im} }. The Weyl group (cf. also Weyl group) W of \frak g is the group generated by the reflections r_i : \mathfrak{h}^ { e ^ { * } } \rightarrow \mathfrak{h} ^ { e ^ { * } } for each \alpha _ { i } \in \Pi ^ { \text{re} }: r ( \lambda ) = \lambda - \lambda ( h _ { i } ) \alpha _ { i }. It will be a (crystallographic) Coxeter group. The real roots of \frak g are defined to be those in W ( \Pi ^ { re } ); all other roots are called imaginary. For all real roots, \operatorname { lim } \mathfrak { g } ^ { \alpha } = 1 and ( \alpha | \alpha ) > 0.

V is called an integrable module if

\begin{equation*} V = \bigoplus _ { \lambda \in \mathfrak { h } ^ { e * } } V ^ { \lambda }, \end{equation*}

where the weight space V ^ { \lambda } : = \{ v \in V : h . v = \lambda ( h ) v \}, with \operatorname{dim}V^\lambda < \infty, and for each i with a _ { i i } = 2 both e _ { i } and f_i are locally nilpotent: i.e. for all v \in V and all sufficiently large k, ( e _ { i } ) ^ { k } . v = 0 = ( f _ { i } ) ^ { k } . v. By the character one means the formal sum

\begin{equation*} \operatorname { ch } _ { V } : = \sum _ { \lambda \in \mathfrak{h} ^ {e* } } ( \operatorname { dim } V ^ { \lambda } ) e ^ { \lambda }. \end{equation*}

Let P _ { + } be the set of all weights \Lambda \in \mathfrak { h } ^ { * } obeying \Lambda ( h _ { i } ) \in {\bf Z}_{ \geq 0} whenever a _ { i i } = 2, and \Lambda ( h _ { i } ) \geq 0 for all i. Define the highest-weight \frak g-module L ( \Lambda ) in the usual way as the quotient of the Verma module (cf. also Representation of a Lie algebra) by the unique proper graded submodule. Then one obtains the Weyl–Kac–Borcherds character formula: Choose \rho \in \mathfrak { h } ^ { * } to satisfy

\begin{equation*} ( \rho \mid \alpha _ { i } ) = \frac { 1 } { 2 } ( \alpha _ { i } \mid \alpha _ { i } ) \end{equation*}

for all i, and define S _ { \Lambda } = e ^ { \Lambda + \rho } \sum _ { s } \epsilon ( s ) e ^ { s }, where s runs over all sums of \alpha _ { i } \in \Pi ^ { \text{im} } and \epsilon ( s ) = ( - 1 ) ^ { m } if s is the sum of m distinct mutually orthogonal imaginary simple roots, each of which is orthogonal to \Lambda, otherwise \epsilon ( s ) = 0. Then \operatorname{ch}_{L(\Lambda)} = \frac{\sum_{w \in W} \epsilon(w) w(S_\Lambda)}{e^\rho \prod_{\alpha \in \Delta_+} (1-e^{-\alpha})^{\operatorname{mult} \alpha}}

where \operatorname{mult}\alpha = \dim \mathfrak{g}^\alpha. S _ { \Lambda } is the correction factor due to imaginary simple roots, much as the "extra" terms in the Macdonald identities are due to the imaginary affine roots. Putting \Lambda = 0 gives the denominator identity, as usual.

Thus, Borcherds algebras strongly resemble Kac–Moody algebras and constitute a natural and non-trivial generalization. The main differences are that they can be generated by copies of the Heisenberg algebra as well as \operatorname{sl} _ { 2 } ( {\bf R} ), and that there can be imaginary simple roots.

Interesting examples of Borcherds algebras are the Monster Lie algebra [a4], whose (twisted) denominator identity supplied the relations needed to complete the proof of the Monstrous Moonshine conjectures, and the fake Monster [a2]. A Borcherds algebra can be associated to any even Lorentzian lattice. The denominator identities of Borcherds algebras are often automorphic forms on the automorphism group O _ { s + 2,2} (\bf R ) of the even self-dual lattice \text{II} _ { s + 2,2 } [a5]. They can serve as "automorphic corrections" to Lorentzian Kac–Moody algebras (see, for instance, [a6]). The space of BPS states in string theory carries a natural structure of a Borcherds-like algebra [a8].

References

[a1] R.E. Borcherds, "Generalized Kac–Moody algebras" J. Algebra , 115 (1988) pp. 501–512
[a2] R.E. Borcherds, "The monster Lie algebra" Adv. Math. , 83 (1990) pp. 30–47
[a3] R.E. Borcherds, "Central extensions of generalized Kac–Moody algebras" J. Algebra , 140 (1991) pp. 330–335
[a4] R.E. Borcherds, "Monstrous moonshine and monstrous Lie superalgebras" Invent. Math. , 109 (1992) pp. 405–444
[a5] R.E. Borcherds, "Automorphic forms on O _ { s + 2,2} (\bf R ) and infinite products" Invent. Math. , 120 (1995) pp. 161–213
[a6] V.A. Gritsenko, V.V. Nikulin, "Siegel automorphic form corrections of some Lorentzian Kac–Moody Lie algebras" Amer. J. Math. , 119 (1997) pp. 181–224
[a7] K. Harada, M. Miyamoto, H. Yamada, "A generalization of Kac–Moody algebras" , Groups, Difference Sets, and the Monster , de Gruyter (1996)
[a8] J.A. Harvey, G. Moore, "On the algebras of BPS states" Commun. Math. Phys. , 197 (1998) pp. 489–519
[a9] E. Jurisich, "An exposition of generalized Kac–Moody algebras" Contemp. Math. , 194 (1996) pp. 121–159
[a10] V.G. Kac, "Simple irreducible graded Lie algebras of finite growth" Math. USSR Izv. , 2 (1968) pp. 1271–1311
[a11] V.G. Kac, "Infinite dimensional Lie algebras" , Cambridge Univ. Press (1990) (Edition: Third)
[a12] R.V. Moody, "A new class of Lie algebras" J. Algebra , 10 (1968) pp. 211–230
How to Cite This Entry:
Borcherds Lie algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Borcherds_Lie_algebra&oldid=55934
This article was adapted from an original article by Terry Gannon (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article