Namespaces
Variants
Actions

Bochner-Riesz means

From Encyclopedia of Mathematics
Jump to: navigation, search

Bochner–Riesz averages

Bochner–Riesz means can be defined and developed in different settings: multiple Fourier integrals; multiple Fourier series; other orthogonal series expansions. Below these three separate cases will be pursued, with regard to -convergence, almost-everywhere convergence, localization, and convergence or oscillation at a pre-assigned point.

A primary motivation for studying these operations lies in the fact that a general Fourier series or Fourier integral expansion can only be expected to converge in the sense of the mean square (i.e., L^{2}) norm; by inserting various smoothing and convergence factors, the convergence can often be improved to L ^ { p }, p \neq 2, or to the almost-everywhere sense.

If f is an integrable function on a Euclidean space {\bf R} ^ { n }, with Fourier transform \hat { f } ( \xi ) = \int _ { \mathbf{R} ^ { n } } f ( x ) e ^ { - 2 \pi i x . \xi } d x, the Bochner–Riesz means of order \delta > 0 are defined by:

\begin{equation*} M _ { R } ^ { \delta } (\, f ) ( x ) = \int _ { | \xi | \leq R } \left( 1 - \frac { | \xi | ^ { 2 } } { R ^ { 2 } } \right) ^ { \delta } e ^ { 2 \pi i x \cdot \xi } \hat { f } ( \xi ) d \xi . \end{equation*}

This also can be formally written as a convolution with a kernel function. If \delta > ( n - 1 ) / 2 (the critical index), then this kernel is integrable; in particular, M _ { R } ^ { \delta } is a bounded operator on L ^ { p } ( \mathbf{R} ^ { n } ), 1 \leq p < \infty, and \operatorname { lim } _ { R \rightarrow \infty } M _ { R } ^ { \delta } f ( x ) = f ( x ) for almost every x \in \mathbf{R} ^ { n } and \| M _ { R } ^ { \delta } f - f \| _ { p } \rightarrow 0. Below the critical index, one has the following results:

If n = 2 and 0 < \delta \leq 1 / 2, then M _ { R } ^ { \delta } is a bounded operator on L ^ { p } if and only if ( 1 / p , \delta ) lies in the trapezoidal region defined by the inequalities ( 1 - 2 \delta ) / 4 < 1 / p < ( 3 + 2 \delta ) / 4.

If n \geq 3 and ( n - 1 ) / 2 ( n + 1 ) < \delta < ( n - 1 ) / 2, then M _ { R } ^ { \delta } is a bounded operator on L ^ { p } if and only if ( 1 / p , \delta ) lies in the trapezoidal region defined by the inequalities ( n - 1 - 2 \delta ) / 2 n < 1 / p < ( n + 1 + 2 \delta ) / 2 n.

If n \geq 3 and 0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 ), then M _ { R } ^ { \delta } is a bounded operator on L ^ { p } if ( 1 / p , \delta ) lies in the triangular region defined by the inequalities ( n - 1 - 2 \delta ) / 2 n < 1 / p < ( n - 1 + 2 \delta ) / 2 n and is an unbounded operator if either 1 / p \leq ( n - 1 - 2 \delta ) / 2 n or 1 / p \geq ( n + 1 + 2 \delta ) / 2 n.

For any n \geq 2, in the limiting case \delta = 0, M _ { R } ^ { \delta } is a bounded operator on L ^ { p } if and only if p = 2. If f \in L ^ { 1 } \cap L ^ { 2 } ( \mathbf{R} ^ { 2 k + 1 } ) and f has j continuous derivatives, then \operatorname { lim } _ { R } M _ { R } ^ { \delta } f ( x ) = f ( x ) provided that \delta \geq k - j. If f = 0 in an open ball centred at 0, then M _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) \rightarrow 0 when R \rightarrow \infty. There is also a Gibbs phenomenon for L^1 functions which have a simple jump across a hypersurface S with respect to x _ { 0 } \in S. If \delta > ( n - 1 ) / 2, then the set of accumulation points of M _ { R } f ( x ) when R \rightarrow \infty, x \rightarrow x_{0} equals the segment with centre [ f _ { S } ^ { + } ( x _ { 0 } ) + f _ { S } ^ { - } ( x _ { 0 } ) ] / 2 and length G _ { \delta } [ f _ { S } ^ { + } ( x _ { 0 } ) - f _ { S } ^ { - } ( x _ { 0 } ) ], where G _ { \delta } = ( 2 / \pi ) \operatorname { sup } _ { x > 0 } \int _ { 0 } ^ { 1 } ( 1 - t ^ { 2 } ) ^ { \delta } \operatorname { sin } x t d t / t.

If f is an integrable function on the torus \mathcal{T} ^ { n }, the Bochner–Riesz means of order \delta > 0 are defined by

\begin{equation*} S _ { R } ^ { \delta } ( f ) ( x ) = \sum _ { | m | \leq R } \left( 1 - \frac { | m | ^ { 2 } } { R ^ { 2 } } \right) ^ { \delta } e ^ { 2 \pi i x m } \hat { f } ( m ), \end{equation*}

where the Fourier coefficient is defined by \widehat { f } ( m ) = \int _ { \mathcal T ^ { n } } f ( x ) e ^ { - 2 \pi i x m } d x. If f \in L ^ { p } ( \mathcal{T} ^ { n } ), then

\begin{equation*} \operatorname { lim } _ { R } S _ { R } ^ { \delta } \,f ( x ) = f ( x ) \end{equation*}

almost everywhere if \delta > ( n - 1 ) | 1 / 2 - 1 / p |; convergence in L ^ { p } holds if | 1 / p - 1 / 2 | \geq 1 / ( n + 1 ) and \delta > 0, \delta > | ( 1 / n p ) - ( 1 / 2 n ) | - 1 / 2. If f \in C ( \mathcal{T} ^ { n } ), \delta > ( n - 1 ) / 2, then \operatorname{lim}S _ { R } ^ { \delta } ( x ) = f ( x ) uniformly for x \in \mathcal{T} ^ { n }. At the critical index, one has the following behaviour: for any open ball centred at 0, there exists an f \in L ^ { 1 } ( \mathcal{T} ^ { n } ) so that f = 0 in the ball and \operatorname{lim\,sup}_R S _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) = + \infty. There exists an integrable function f for which \operatorname{lim sup}_R S _ { R } ^ { ( n - 1 ) / 2 } f ( x ) = + \infty for almost every x \in \mathcal{T} ^ { n }. If, in addition, | f | \operatorname { log } ^ { + } | f | is integrable and f satisfies a Dini condition (cf. also Dini criterion) at x _ { 0 }, then \lim _R S _ { R } ^ { ( n - 1 ) / 2 } f ( x _ { 0 } ) = f ( x _ { 0 } ).

Bochner–Riesz means can be defined with respect to any orthonormal basis \{ \phi _ { k } \} of the Hilbert space corresponding to a self-adjoint differential operator L with eigenvalues \lambda _ { k } \geq 0. In this setting, the Bochner–Riesz means of order \delta > 0 are defined by

\begin{equation*} S _ { R } ^ { \delta }\, f ( x ) = \sum _ { \lambda _ { k } \leq R } \left( 1 - \frac { \lambda _ { k } } { R } \right) ^ { \delta } ( f , \phi _ { k } ) \phi _ { k } ( x ). \end{equation*}

In the case of multiple Hermite series corresponding to the differential operator L = ( \Delta / 2 ) - x . \nabla on {\bf R} ^ { n }, one has \lambda _ { k } = 2 k + n and the convergence in L ^ { p } holds if \delta > ( n - 1 ) / 2; almost-everywhere convergence holds if \delta > ( 3 n - 2 ) / 6. In the case of an arbitrary elliptic differential operator on a compact manifold, it is known that if f \in L ^ { 1 }, then \| S _ { R } ^ { \delta }\, f - f \| _ { 1 } \rightarrow 0 whenever \delta > ( n - 1 ) / 2. For second-order operators there is an L ^ { p } convergence theorem, provided that | 1 / p - 1 / 2 | \geq 1 / ( n + 1 ) and \delta > 0 and \delta > | 1 / n p - 1 / 2 n | - 1 / 2.

References

[a1] S. Bochner, "Summation of multiple Fourier series by spherical means" Trans. Amer. Math. Soc. , 40 (1936) pp. 175–207 Zbl 62.0293.03
[a2] C. Fefferman, "A note on spherical summation multipliers" Israel J. Math. , 15 (1973) pp. 44–52
[a3] B.I. Golubov, "On Gibb's phenomenon for Riesz spherical means of multiple Fourier integrals and Fourier series" Anal. Math. , 4 (1978) pp. 269–287
[a4] B.M. Levitan, "Ueber die Summierung mehrfacher Fourierreihen und Fourierintegrale" Dokl. Akad. Nauk SSSR , 102 (1955) pp. 1073–1076
[a5] E.M. Stein, "Harmonic analysis" , Princeton Univ. Press (1993)
[a6] S. Thangavelu, "Lectures on Hermite and Laguerre expansions" , Princeton Univ. Press (1993)
[a7] C. Sogge, "On the convergence of Riesz means on compact manifolds" Ann. of Math. , 126 (1987) pp. 439–447
How to Cite This Entry:
Bochner-Riesz means. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bochner-Riesz_means&oldid=55284
This article was adapted from an original article by Mark Pinsky (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article