Namespaces
Variants
Actions

Difference between revisions of "Virial decomposition"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
v0967201.png
 +
$#A+1 = 29 n = 0
 +
$#C+1 = 29 : ~/encyclopedia/old_files/data/V096/V.0906720 Virial decomposition,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''virial series''
 
''virial series''
  
 
The series on the right-hand side of the equation of state of a gas:
 
The series on the right-hand side of the equation of state of a gas:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v0967201.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{Pv }{kT }
 +
  = \
 +
1 + \sum _ {1 \leq  i \leq  \infty }
 +
 
 +
\frac{B _ {i + 1 }  ( T) }{v  ^ {i} }
 +
,
 +
$$
 +
 
 +
where  $  P $
 +
is the pressure,  $  T $
 +
is the temperature,  $  v $
 +
is the specific volume, and  $  k $
 +
is the Boltzmann constant. The term of the series which contains the  $  k $-
 +
th virial coefficient  $  B _ {k} $
 +
describes the deviation of the gas from ideal behaviour due to the interaction in groups of  $  k $
 +
molecules.  $  B _ {k} $
 +
can be expressed in terms of irreducible repeated integrals  $  b _ {k} $:
 +
 
 +
$$
 +
B _ {k}  = {
 +
\frac{k - 1 }{k}
 +
} \sum
 +
 
 +
\frac{( k - 2 + \sum n _ {j} ) ! }{( k - 1) ! }
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v0967202.png" /> is the pressure, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v0967203.png" /> is the temperature, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v0967204.png" /> is the specific volume, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v0967205.png" /> is the Boltzmann constant. The term of the series which contains the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v0967206.png" />-th virial coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v0967207.png" /> describes the deviation of the gas from ideal behaviour due to the interaction in groups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v0967208.png" /> molecules. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v0967209.png" /> can be expressed in terms of irreducible repeated integrals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672010.png" />:
+
(- 1) ^ {\sum n _ {j} }
 +
\prod _ { j }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672011.png" /></td> </tr></table>
+
\frac{( jb _ {j} ) ^ {n _ {j} } }{n _ {j} ! }
 +
,
 +
$$
  
summed over all natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672013.png" />, subject to the condition
+
summed over all natural numbers $  n _ {j} $,  
 +
$  j \geq  2 $,  
 +
subject to the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672014.png" /></td> </tr></table>
+
$$
 +
\sum _ {2 \leq  j \leq  k }
 +
( j - 1) n _ {j}  = k - 1.
 +
$$
  
 
In particular,
 
In particular,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672015.png" /></td> </tr></table>
+
$$
 +
B _ {2}  = - b _ {2} ,
 +
\  B _ {3}  = 4b _ {2}  ^ {2} - 2b _ {3} ;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672016.png" /></td> </tr></table>
+
$$
 +
b _ {2}  =
 +
\frac{1}{2 ! V }
 +
\int\limits \int\limits f _ {12}  d  ^ {3} q _ {1}  d  ^ {3} q _ {2} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672017.png" /></td> </tr></table>
+
$$
 +
b _ {3}  =
 +
\frac{1}{3 ! V }
 +
\times
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672018.png" /></td> </tr></table>
+
$$
 +
\times
 +
\int\limits \int\limits \int\limits ( f _ {31} f _ {21} + f _ {32} f _ {31} + f _ {32} f _ {21} +
 +
f _ {21} f _ {32} f _ {31} ) \
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672019.png" /></td> </tr></table>
+
$$
 +
 +
d  ^ {3} q _ {1}  d  ^ {3} q _ {2}  d  ^ {3} q _ {3} ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672020.png" /></td> </tr></table>
+
$$
 +
f _ {ij}  =   \mathop{\rm exp}
 +
\left [ -
 +
\frac{\Phi ( | q _ {i} - q _ {j} | ) }{kT }
 +
\right ] - 1,
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672021.png" /> is the volume of the gas, the integration extends over the total volume occupied by the gas, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672022.png" /> is the interaction potential. There is a rule for writing down <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672023.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672024.png" /> in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672025.png" />. The expression obtained after simplification is:
+
$  V $
 +
is the volume of the gas, the integration extends over the total volume occupied by the gas, and $  \Phi $
 +
is the interaction potential. There is a rule for writing down $  b _ {j} $
 +
for any $  j $
 +
in terms of $  f _ {ij} $.  
 +
The expression obtained after simplification is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672026.png" /></td> </tr></table>
+
$$
 +
B _ {3}  = - {
 +
\frac{1}{3}
 +
}
 +
\int\limits \int\limits f _ {12} f _ {13} f _ {23}  d  ^ {3} q _ {1}  d  ^ {3} q _ {2} .
 +
$$
  
 
In practice, only the first few virial coefficients can be calculated.
 
In practice, only the first few virial coefficients can be calculated.
  
Power series in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672027.png" />, with coefficients expressed in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672028.png" />, can be used to represent equilibrium correlation functions for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096720/v09672029.png" /> particles; a corollary of this fact is that the equation of state can be obtained in a simple manner [[#References|[3]]].
+
Power series in v ^ {-} 1 $,  
 +
with coefficients expressed in terms of $  b _ {j} $,  
 +
can be used to represent equilibrium correlation functions for $  s $
 +
particles; a corollary of this fact is that the equation of state can be obtained in a simple manner [[#References|[3]]].
  
 
There exists a quantum-mechanical analogue of the virial decomposition.
 
There exists a quantum-mechanical analogue of the virial decomposition.

Latest revision as of 08:28, 6 June 2020


virial series

The series on the right-hand side of the equation of state of a gas:

$$ \frac{Pv }{kT } = \ 1 + \sum _ {1 \leq i \leq \infty } \frac{B _ {i + 1 } ( T) }{v ^ {i} } , $$

where $ P $ is the pressure, $ T $ is the temperature, $ v $ is the specific volume, and $ k $ is the Boltzmann constant. The term of the series which contains the $ k $- th virial coefficient $ B _ {k} $ describes the deviation of the gas from ideal behaviour due to the interaction in groups of $ k $ molecules. $ B _ {k} $ can be expressed in terms of irreducible repeated integrals $ b _ {k} $:

$$ B _ {k} = { \frac{k - 1 }{k} } \sum \frac{( k - 2 + \sum n _ {j} ) ! }{( k - 1) ! } (- 1) ^ {\sum n _ {j} } \prod _ { j } \frac{( jb _ {j} ) ^ {n _ {j} } }{n _ {j} ! } , $$

summed over all natural numbers $ n _ {j} $, $ j \geq 2 $, subject to the condition

$$ \sum _ {2 \leq j \leq k } ( j - 1) n _ {j} = k - 1. $$

In particular,

$$ B _ {2} = - b _ {2} , \ B _ {3} = 4b _ {2} ^ {2} - 2b _ {3} ; $$

$$ b _ {2} = \frac{1}{2 ! V } \int\limits \int\limits f _ {12} d ^ {3} q _ {1} d ^ {3} q _ {2} , $$

$$ b _ {3} = \frac{1}{3 ! V } \times $$

$$ \times \int\limits \int\limits \int\limits ( f _ {31} f _ {21} + f _ {32} f _ {31} + f _ {32} f _ {21} + f _ {21} f _ {32} f _ {31} ) \ $$

$$ d ^ {3} q _ {1} d ^ {3} q _ {2} d ^ {3} q _ {3} , $$

where

$$ f _ {ij} = \mathop{\rm exp} \left [ - \frac{\Phi ( | q _ {i} - q _ {j} | ) }{kT } \right ] - 1, $$

$ V $ is the volume of the gas, the integration extends over the total volume occupied by the gas, and $ \Phi $ is the interaction potential. There is a rule for writing down $ b _ {j} $ for any $ j $ in terms of $ f _ {ij} $. The expression obtained after simplification is:

$$ B _ {3} = - { \frac{1}{3} } \int\limits \int\limits f _ {12} f _ {13} f _ {23} d ^ {3} q _ {1} d ^ {3} q _ {2} . $$

In practice, only the first few virial coefficients can be calculated.

Power series in $ v ^ {-} 1 $, with coefficients expressed in terms of $ b _ {j} $, can be used to represent equilibrium correlation functions for $ s $ particles; a corollary of this fact is that the equation of state can be obtained in a simple manner [3].

There exists a quantum-mechanical analogue of the virial decomposition.

References

[1] J.E. Mayer, M. Goeppert-Mayer, "Statistical mechanics" , Wiley (1940)
[2] R. Feynman, "Statistical mechanics" , M.I.T. (1972)
[3] N.N. Bogolyubov, "Problems of a dynamical theory in statistical physics" , North-Holland (1962) (Translated from Russian)
[4] G.E. Uhlenbeck, G.V. Ford, "Lectures in statistical mechanics" , Amer. Math. Soc. (1963)
How to Cite This Entry:
Virial decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Virial_decomposition&oldid=49149
This article was adapted from an original article by I.P. Pavlotskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article