Namespaces
Variants
Actions

Difference between revisions of "Variational series"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
v0962701.png
 +
$#A+1 = 14 n = 0
 +
$#C+1 = 14 : ~/encyclopedia/old_files/data/V096/V.0906270 Variational series,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''series of order statistics''
 
''series of order statistics''
  
An arrangement of the values of a random sample <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v0962701.png" /> with distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v0962702.png" /> in ascending sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v0962703.png" />. The series is used to construct the empirical distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v0962704.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v0962705.png" /> is the number of terms of the series which are smaller than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v0962706.png" />. Important characteristics of series of order statistics are its extremal terms (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v0962707.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v0962708.png" />) and the range <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v0962709.png" />. The densities of the distributions of the minimum and maximum terms of a series of order statistics in the case
+
An arrangement of the values of a random sample $  ( x _ {1} \dots x _ {n} ) $
 +
with distribution function $  F( x) $
 +
in ascending sequence $  x _ {(} 1) \leq  \dots \leq  x _ {(} n) $.  
 +
The series is used to construct the empirical distribution function $  {F _ {n} } ( x) = {m _ {x} } /n $,  
 +
where $  m _ {x} $
 +
is the number of terms of the series which are smaller than $  x $.  
 +
Important characteristics of series of order statistics are its extremal terms ( $  x _ {(} 1) = \min _ {1 \leq  i \leq  n }  x _ {i} $,  
 +
$  x _ {(} n) = \max _ {1 \leq  i \leq  n }  x _ {i} $)  
 +
and the range $  R _ {n} = {x _ {(} n) } - {x _ {(} 1) } $.  
 +
The densities of the distributions of the minimum and maximum terms of a series of order statistics in the case
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v09627010.png" /></td> </tr></table>
+
$$
 +
F ( x)  = \int\limits _ {- \infty } ^ { x }  p ( y)  dy
 +
$$
  
 
are defined by the expressions
 
are defined by the expressions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v09627011.png" /></td> </tr></table>
+
$$
 +
p _ {(} 1) ( x)  = n [ 1 - F ( x)] ^ {n - 1 } p ( x)
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v09627012.png" /></td> </tr></table>
+
$$
 +
p _ {(} n) ( x)  = nF ^ { n - 1 } ( x) p( x).
 +
$$
  
Considered as a stochastic process with time index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v09627013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096270/v09627014.png" />, the series of order statistics forms a non-homogeneous [[Markov chain|Markov chain]].
+
Considered as a stochastic process with time index $  i $,  
 +
$  i = 1 \dots n $,  
 +
the series of order statistics forms a non-homogeneous [[Markov chain|Markov chain]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.S. Wilks,  "Mathematical statistics" , Wiley  (1962)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.S. Wilks,  "Mathematical statistics" , Wiley  (1962)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 08:28, 6 June 2020


series of order statistics

An arrangement of the values of a random sample $ ( x _ {1} \dots x _ {n} ) $ with distribution function $ F( x) $ in ascending sequence $ x _ {(} 1) \leq \dots \leq x _ {(} n) $. The series is used to construct the empirical distribution function $ {F _ {n} } ( x) = {m _ {x} } /n $, where $ m _ {x} $ is the number of terms of the series which are smaller than $ x $. Important characteristics of series of order statistics are its extremal terms ( $ x _ {(} 1) = \min _ {1 \leq i \leq n } x _ {i} $, $ x _ {(} n) = \max _ {1 \leq i \leq n } x _ {i} $) and the range $ R _ {n} = {x _ {(} n) } - {x _ {(} 1) } $. The densities of the distributions of the minimum and maximum terms of a series of order statistics in the case

$$ F ( x) = \int\limits _ {- \infty } ^ { x } p ( y) dy $$

are defined by the expressions

$$ p _ {(} 1) ( x) = n [ 1 - F ( x)] ^ {n - 1 } p ( x) $$

and

$$ p _ {(} n) ( x) = nF ^ { n - 1 } ( x) p( x). $$

Considered as a stochastic process with time index $ i $, $ i = 1 \dots n $, the series of order statistics forms a non-homogeneous Markov chain.

References

[1] S.S. Wilks, "Mathematical statistics" , Wiley (1962)

Comments

The phrase "variational series" is almost never used in the West. Cf. also Order statistic.

References

[a1] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)
How to Cite This Entry:
Variational series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Variational_series&oldid=14157
This article was adapted from an original article by A.I. Shalyt (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article