Difference between revisions of "Van der Waerden theorem"
(Importing text file) |
m (→References: isbn link) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | {{TEX|done}} | ||
+ | |||
''on arithmetic progressions'' | ''on arithmetic progressions'' | ||
− | Given natural numbers | + | Given natural numbers $\ell,m$, there exists a number $N(\ell,m)$ such that if $n \ge N(\ell,m)$ and $\{1,2,\ldots,n\}$ is partitioned into $m$ sets, then at least one set contains $\ell$ terms in [[Arithmetic progression|arithmetic progression]] [[#References|[a1]]]. Another, equivalent, non-finitary, formulation is as follows. Let $\mathbb{N} = X_1 \cup \cdots \cup X_m$ be a finite partition of the natural numbers; then at least one $X_i$ contains arithmetic progressions of arbitrary length. The result was conjectured by A. Baudet. Let $A \subset \{1,2,\ldots\}$ be a set of natural numbers and let $\bar d(A)$ be its upper [[asymptotic density]]. When discussing van der Waerden's theorem stated above, P. Erdös and P. Turán conjectured that if $\bar d(A) > 0$, then $A$ contains arbitrary long arithmetic progressions; [[#References|[a2]]]. |
− | Let | + | Let $B(\ell,n)$ be a maximally large subset of $\{1,2,\ldots,n\}$ which contains no $\ell$ elements in arithmetic progression. Let $b(\ell,n)$ be the number of elements in a $B(\ell,n)$. Then Szemerédi's theorem, [[#References|[a3]]], says that $\lim_{n \rightarrow \infty} n^{-1} b(\ell,n) = 0$. This implies the Erdös–Turán conjecture. Another proof of Szemerédi's theorem was given by H. Furstenberg, based on ideas from [[Ergodic theory|ergodic theory]], [[#References|[a4]]]. |
For a personal historical account of the van der Waerden theorem see [[#References|[a6]]]. | For a personal historical account of the van der Waerden theorem see [[#References|[a6]]]. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B.L. van der Waerden, "Beweis einer Baudetschen Vermutung" ''Nieuw Arch. Wisk.'' , '''15''' (1927) pp. 212–216</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Erdös, P. Turán, "On some sequences of integers" ''J. London Math. Soc.'' , '''11''' (1936) pp. 261–264</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E. Szemerédi, "On sets of integers containing no | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> B.L. van der Waerden, "Beweis einer Baudetschen Vermutung" ''Nieuw Arch. Wisk.'' , '''15''' (1927) pp. 212–216</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Erdös, P. Turán, "On some sequences of integers" ''J. London Math. Soc.'' , '''11''' (1936) pp. 261–264</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> E. Szemerédi, "On sets of integers containing no $k$-elements in arithmetic progression" ''Acta Arithm.'' , '''27''' (1975) pp. 199–245</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> H. Furstenberg, "Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions" ''J. d'Anal. Math.'' , '''31''' (1977) pp. 204–256</TD></TR> | ||
+ | <TR><TD valign="top">[a5]</TD> <TD valign="top"> H. Furstenberg, "Recurrence in ergodic theory and combinatorial number theory" , Princeton Univ. Press (1981)</TD></TR> | ||
+ | <TR><TD valign="top">[a6]</TD> <TD valign="top"> A.Ya. Khinchin, "Three pearls of number theory" , Graylock (1952) Translation from the second, revised Russian ed. [1948] {{ZBL|0048.27202}} Reprinted Dover (2003) {{ISBN|0486400263}} </TD></TR> | ||
+ | </table> |
Latest revision as of 19:05, 20 November 2023
on arithmetic progressions
Given natural numbers $\ell,m$, there exists a number $N(\ell,m)$ such that if $n \ge N(\ell,m)$ and $\{1,2,\ldots,n\}$ is partitioned into $m$ sets, then at least one set contains $\ell$ terms in arithmetic progression [a1]. Another, equivalent, non-finitary, formulation is as follows. Let $\mathbb{N} = X_1 \cup \cdots \cup X_m$ be a finite partition of the natural numbers; then at least one $X_i$ contains arithmetic progressions of arbitrary length. The result was conjectured by A. Baudet. Let $A \subset \{1,2,\ldots\}$ be a set of natural numbers and let $\bar d(A)$ be its upper asymptotic density. When discussing van der Waerden's theorem stated above, P. Erdös and P. Turán conjectured that if $\bar d(A) > 0$, then $A$ contains arbitrary long arithmetic progressions; [a2].
Let $B(\ell,n)$ be a maximally large subset of $\{1,2,\ldots,n\}$ which contains no $\ell$ elements in arithmetic progression. Let $b(\ell,n)$ be the number of elements in a $B(\ell,n)$. Then Szemerédi's theorem, [a3], says that $\lim_{n \rightarrow \infty} n^{-1} b(\ell,n) = 0$. This implies the Erdös–Turán conjecture. Another proof of Szemerédi's theorem was given by H. Furstenberg, based on ideas from ergodic theory, [a4].
For a personal historical account of the van der Waerden theorem see [a6].
References
[a1] | B.L. van der Waerden, "Beweis einer Baudetschen Vermutung" Nieuw Arch. Wisk. , 15 (1927) pp. 212–216 |
[a2] | P. Erdös, P. Turán, "On some sequences of integers" J. London Math. Soc. , 11 (1936) pp. 261–264 |
[a3] | E. Szemerédi, "On sets of integers containing no $k$-elements in arithmetic progression" Acta Arithm. , 27 (1975) pp. 199–245 |
[a4] | H. Furstenberg, "Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions" J. d'Anal. Math. , 31 (1977) pp. 204–256 |
[a5] | H. Furstenberg, "Recurrence in ergodic theory and combinatorial number theory" , Princeton Univ. Press (1981) |
[a6] | A.Ya. Khinchin, "Three pearls of number theory" , Graylock (1952) Translation from the second, revised Russian ed. [1948] Zbl 0048.27202 Reprinted Dover (2003) ISBN 0486400263 |
Van der Waerden theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Van_der_Waerden_theorem&oldid=12126