Namespaces
Variants
Actions

Difference between revisions of "User:Richard Pinch/sandbox-13"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: downset)
(Start article: Trace monoid)
Line 1: Line 1:
 +
=Trace=
 +
'''Trace''' may refer to
 +
 +
* [[Trace on a field extension]]
 +
* [[Trace of a square matrix]]
 +
* [[Trace on a C*-algebra]]
 +
* An element of a [[trace monoid]]
 +
* [[Reduced trace]] on a central simple algebra
 +
 +
=Trace monoid=
 +
Let $A$ be an [[alphabet]] with an irreflexive symmetric relation $I$ called ''independence''.  The complementary relation $I = A \times A \setminus I$ is the "dependence" relation.  Such an alphabet is a ''concurrence'' or ''dependency'' alphabet.  The free monoid on $A$ modulo the relations $ab=ba$ when $a,b \in I$ is the ''trace monoid'' on $(A,D)$.  The elements of a trace monoid are "traces" and the subsets are the "trace languages".
 +
 +
Trace monoids are used to model concurrency in computer languages.
 +
 +
==References==
 +
* Diekert, Volker; Rozenberg, Grzegorz (edd) "The Book Of Traces" (World Scientific, 1995) ISBN  981-02-2058-8
 +
 +
 
=Downset=
 
=Downset=
 
''lower set'', ''lower cone''
 
''lower set'', ''lower cone''

Revision as of 17:34, 30 April 2020

Trace

Trace may refer to

Trace monoid

Let $A$ be an alphabet with an irreflexive symmetric relation $I$ called independence. The complementary relation $I = A \times A \setminus I$ is the "dependence" relation. Such an alphabet is a concurrence or dependency alphabet. The free monoid on $A$ modulo the relations $ab=ba$ when $a,b \in I$ is the trace monoid on $(A,D)$. The elements of a trace monoid are "traces" and the subsets are the "trace languages".

Trace monoids are used to model concurrency in computer languages.

References

  • Diekert, Volker; Rozenberg, Grzegorz (edd) "The Book Of Traces" (World Scientific, 1995) ISBN 981-02-2058-8


Downset

lower set, lower cone

A subset $S$ of a partially ordered set $(P,{\le})$ with the property that if $x \in S$ and $y \le x$ then $y \in S$.

The principal downset on an element $a \in P$ is the set $x^\Delta$, also denoted $(x]$, is defined as $x^\Delta = \{y \in P : y \le x \}$.

The dual notion of upset (upper set, upper cone) is defined as a subset $S$ of with the property that if $x \in S$ and $x \le y$ then $y \in S$. The principal upset on an element $a \in P$ is the set $x^\nabla$, also denoted $[x)$, is defined as $x^\nabla = \{y \in P : x \le y \}$.

The terms "ideal" and "filter" are sometimes used for downset and upset respectively. However, it is usual to impose the extra condition that an ideal contain the supremum of any two elements and, dually, that a filter contain the infimum of any two element. See the comments at Ideal and Filter.

Span

Span may refer to

Span (category theory)

A diagram in a category of the form $$ \begin{array}{ccccc} & & C & & \\ & f \swarrow & & \searrow g & \\ A & & & & B \end{array} $$

Two spans with arrows $(f,g)$ and $(f',g')$ are equivalent if for all $D,p,q$ the diagrams $$ \begin{array}{ccccc} & & C & & \\ & f \swarrow & & \searrow g & \\ A & & & & B \\ & p \searrow & & \swarrow q \\ & & D & & \\ \end{array} \ \ \text{and}\ \ \begin{array}{ccccc} & & C & & \\ & f' \swarrow & & \searrow g' & \\ A & & & & B \\ & p \searrow & & \swarrow q \\ & & D & & \\ \end{array} $$ either both commute or both do not commute.

A pushout is the colimit of a span.

References

[1] S. MacLane, "Categories for the working mathematician" , Springer (1971). ISBN 0-387-98403-8

Standard construction

A concept in category theory. Other names are triple, monad and functor-algebra.

Let $\mathfrak{S}$ be a category. A standard construction is a functor $T:\mathfrak{S} \rightarrow \mathfrak{S}$ equipped with natural transformations $\eta:1\rightarrow T$ and $\mu:T^2\rightarrow T$ such that the following diagrams commute: $$ \begin{array}{ccc} T^3 Y & \stackrel{T\mu_Y}{\rightarrow} & T^2 Y \\ \mu_{TY}\downarrow& & \downarrow_Y \\ T^2 & \stackrel{T_y}{\rightarrow} & Y \end{array} $$ $$ \begin{array}{ccccc} TY & \stackrel{TY}{\rightarrow} & T^2Y & \stackrel{T_{\eta Y}}{\leftarrow} & TY \\ & 1\searrow & \downarrow\mu Y & \swarrow1 & \\ & & Y & & \\ \end{array} $$

The basic use of standard constructions in topology is in the construction of various classifying spaces and their algebraic analogues, the so-called bar-constructions.

References

[1] J.M. Boardman, R.M. Vogt, "Homotopy invariant algebraic structures on topological spaces" , Springer (1973)
[2] J.F. Adams, "Infinite loop spaces" , Princeton Univ. Press (1978)
[3] J.P. May, "The geometry of iterated loop spaces" , Lect. notes in math. , 271 , Springer (1972)
[4] S. MacLane, "Categories for the working mathematician" , Springer (1971)


Comments

The term "standard construction" was introduced by R. Godement [a1] for want of a better name for this concept. It is now entirely obsolete, having been generally superseded by "monad" (although a minority of authors still use the term "triple" ). Monads have many other uses besides the one mentioned above, for example in the categorical approach to universal algebra (see [a2], [a3]).

References

[a1] R. Godement, "Théorie des faisceaux" , Hermann (1958)
[a2] E.G. Manes, "Algebraic theories" , Springer (1976)
[a3] M. Barr, C. Wells, "Toposes, triples and theories" , Springer (1985)
How to Cite This Entry:
Richard Pinch/sandbox-13. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-13&oldid=45620