Namespaces
Variants
Actions

Difference between revisions of "Urysohn equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
u0958701.png
 +
$#A+1 = 34 n = 0
 +
$#C+1 = 34 : ~/encyclopedia/old_files/data/U095/U.0905870 Urysohn equation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A non-linear integral equation of the form
 
A non-linear integral equation of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u0958701.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
\phi ( x)  = \lambda
 +
\int\limits _  \Omega  K ( x , s , \phi ( s) )  d s + f ( x) ,\ \
 +
x \in \Omega ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u0958702.png" /> is a bounded closed set in a finite-dimensional Euclidean space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u0958703.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u0958704.png" /> are given functions for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u0958705.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u0958706.png" />. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u0958707.png" /> is continuous for the set of variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u0958708.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u0958709.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587010.png" /> is some positive number), and let
+
where $  \Omega $
 +
is a bounded closed set in a finite-dimensional Euclidean space and $  K ( x , s , t ) $
 +
and $  f ( x) $
 +
are given functions for $  x , s \in \Omega $,
 +
$  - \infty < t < \infty $.  
 +
Suppose that $  K ( x , s , t ) $
 +
is continuous for the set of variables $  x , s \in \Omega $,  
 +
$  | t | \leq  \rho $(
 +
where $  \rho $
 +
is some positive number), and let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587011.png" /></td> </tr></table>
+
$$
 +
\left |
 +
\frac{\partial  K ( x , s , t ) }{\partial  t }
 +
\right |  \leq  M  = \textrm{ const } ,\ \
 +
x , s \in \Omega ,\ \
 +
| t | \leq  \rho .
 +
$$
  
 
If
 
If
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587012.png" /></td> </tr></table>
+
$$
 +
| \lambda | M  \mathop{\rm meas} ( \Omega )  < 1 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587013.png" /></td> </tr></table>
+
$$
 +
| \lambda |  \max _ {x \in \Omega }  \int\limits
 +
_  \Omega  \max _ {| t | \leq  \rho }  | K ( x , s , t ) |  d s  \leq  \rho ,
 +
$$
  
 
then the equation
 
then the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587014.png" /></td> </tr></table>
+
$$
 +
\phi ( x)  = \lambda \int\limits _  \Omega  K ( x , s , \phi ( s) )  d s
 +
$$
  
has a unique continuous solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587016.png" />, satisfying the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587017.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587018.png" /> is any continuous function satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587019.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587020.png" />), then the sequence of approximations
+
has a unique continuous solution $  \phi ( x) $,  
 +
$  x \in \Omega $,  
 +
satisfying the inequality $  | \phi ( x) | \leq  \rho $.  
 +
If $  \phi _ {0} $
 +
is any continuous function satisfying $  | \phi _ {0} ( x) | \leq  \rho $(
 +
$  x \in \Omega $),  
 +
then the sequence of approximations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587021.png" /></td> </tr></table>
+
$$
 +
\phi _ {n} ( x)  = \lambda
 +
\int\limits _  \Omega  K ( x , s , \phi _ {n-} 1 ( s) )  d s ,\ \
 +
n = 1 , 2 \dots
 +
$$
  
converges uniformly on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587022.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587023.png" />.
+
converges uniformly on $  \Omega $
 +
to $  \phi ( x) $.
  
 
Let the Urysohn operator
 
Let the Urysohn operator
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587024.png" /></td> </tr></table>
+
$$
 +
A \phi ( x)  = \
 +
\int\limits _  \Omega  K ( x , s , \phi ( s) )  d s
 +
$$
  
act in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587026.png" />, and let for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587028.png" /> the inequality
+
act in the space $  L _ {p} ( \Omega ) $,  
 +
$  p > 1 $,  
 +
and let for all $  t _ {1} , t _ {2} $,
 +
$  x , s \in \Omega $
 +
the inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587029.png" /></td> </tr></table>
+
$$
 +
| K ( x , s , t _ {1} ) - K ( x , s , t _ {2} ) |
 +
\leq  K _ {1} ( x , s )  | t _ {1} - t _ {2} |
 +
$$
  
be fulfilled, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587030.png" /> is a measurable function satisfying
+
be fulfilled, where $  K _ {1} $
 +
is a measurable function satisfying
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587031.png" /></td> </tr></table>
+
$$
 +
\Delta  ^ {p}  = \
 +
\int\limits _  \Omega  \left (
 +
\int\limits _  \Omega  K _ {1} ^ {p / ( p - 1 ) } ( x , s )  d s \right )
 +
^ {p-} 1  d x  < \infty .
 +
$$
  
Then for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587033.png" />, equation (*) has a unique solution in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095870/u09587034.png" />.
+
Then for $  | \lambda | < \Delta  ^ {-} 1 $
 +
and $  f \in L _ {p} ( \Omega ) $,  
 +
equation (*) has a unique solution in $  L _ {p} ( \Omega ) $.
  
 
Under certain assumptions, equation (*) was first studied by P.S. Urysohn (cf. [[Non-linear integral equation|Non-linear integral equation]]).
 
Under certain assumptions, equation (*) was first studied by P.S. Urysohn (cf. [[Non-linear integral equation|Non-linear integral equation]]).

Latest revision as of 08:27, 6 June 2020


A non-linear integral equation of the form

$$ \tag{* } \phi ( x) = \lambda \int\limits _ \Omega K ( x , s , \phi ( s) ) d s + f ( x) ,\ \ x \in \Omega , $$

where $ \Omega $ is a bounded closed set in a finite-dimensional Euclidean space and $ K ( x , s , t ) $ and $ f ( x) $ are given functions for $ x , s \in \Omega $, $ - \infty < t < \infty $. Suppose that $ K ( x , s , t ) $ is continuous for the set of variables $ x , s \in \Omega $, $ | t | \leq \rho $( where $ \rho $ is some positive number), and let

$$ \left | \frac{\partial K ( x , s , t ) }{\partial t } \right | \leq M = \textrm{ const } ,\ \ x , s \in \Omega ,\ \ | t | \leq \rho . $$

If

$$ | \lambda | M \mathop{\rm meas} ( \Omega ) < 1 , $$

$$ | \lambda | \max _ {x \in \Omega } \int\limits _ \Omega \max _ {| t | \leq \rho } | K ( x , s , t ) | d s \leq \rho , $$

then the equation

$$ \phi ( x) = \lambda \int\limits _ \Omega K ( x , s , \phi ( s) ) d s $$

has a unique continuous solution $ \phi ( x) $, $ x \in \Omega $, satisfying the inequality $ | \phi ( x) | \leq \rho $. If $ \phi _ {0} $ is any continuous function satisfying $ | \phi _ {0} ( x) | \leq \rho $( $ x \in \Omega $), then the sequence of approximations

$$ \phi _ {n} ( x) = \lambda \int\limits _ \Omega K ( x , s , \phi _ {n-} 1 ( s) ) d s ,\ \ n = 1 , 2 \dots $$

converges uniformly on $ \Omega $ to $ \phi ( x) $.

Let the Urysohn operator

$$ A \phi ( x) = \ \int\limits _ \Omega K ( x , s , \phi ( s) ) d s $$

act in the space $ L _ {p} ( \Omega ) $, $ p > 1 $, and let for all $ t _ {1} , t _ {2} $, $ x , s \in \Omega $ the inequality

$$ | K ( x , s , t _ {1} ) - K ( x , s , t _ {2} ) | \leq K _ {1} ( x , s ) | t _ {1} - t _ {2} | $$

be fulfilled, where $ K _ {1} $ is a measurable function satisfying

$$ \Delta ^ {p} = \ \int\limits _ \Omega \left ( \int\limits _ \Omega K _ {1} ^ {p / ( p - 1 ) } ( x , s ) d s \right ) ^ {p-} 1 d x < \infty . $$

Then for $ | \lambda | < \Delta ^ {-} 1 $ and $ f \in L _ {p} ( \Omega ) $, equation (*) has a unique solution in $ L _ {p} ( \Omega ) $.

Under certain assumptions, equation (*) was first studied by P.S. Urysohn (cf. Non-linear integral equation).

References

[1] M.A. Krasnosel'skii, "Topological methods in the theory of nonlinear integral equations" , Pergamon (1964) (Translated from Russian)
[2] P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) (Translated from Russian)
How to Cite This Entry:
Urysohn equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Urysohn_equation&oldid=13374
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article