Uniform topology

From Encyclopedia of Mathematics
Revision as of 21:56, 12 October 2014 by Richard Pinch (talk | contribs) (Category:Topological spaces with richer structure)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The topology generated by a uniform structure. In more detail, let $X$ be a set equipped with a uniform structure (that is, a uniform space) $U$, and for each $x\in X$ let $B(x)$ denote the set of subsets $V(x)$ of $X$ as $V$ runs through the entourages of $U$. Then there is in $X$ one, and moreover only one, topology (called the uniform topology) for which $B(x)$ is the neighbourhood filter at $x$ for any $x\in X$. A topology is called uniformizable if there is a uniform structure that generates it. Not every topological space is uniformizable; for example, non-regular spaces.


For references see Uniform space.

How to Cite This Entry:
Uniform topology. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article