Namespaces
Variants
Actions

Difference between revisions of "Triangular norm"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX partially done)
(TeX partially done)
Line 26: Line 26:
 
The following are the four basic triangular norms, together with their dual triangular co-norms:
 
The following are the four basic triangular norms, together with their dual triangular co-norms:
  
i) the minimum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017032.png" /> and maximum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017033.png" />, given by
+
i) the minimum $T_{\mathrm{M}}$ and maximum $S_{\mathrm{M}}$, given by
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017034.png" /></td> </tr></table>
+
T_{\mathrm{M}}(x,y) = \min(x,y) \ ;
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017035.png" /></td> </tr></table>
+
$$
 
+
S_{\mathrm{M}}(x,y) = \max(x,y) \ .
ii) the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017036.png" /> and probabilistic sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017037.png" />, given by
+
$$
 
+
ii) the product $T_{\mathrm{P}}$ and probabilistic sum $S_{\mathrm{P}}$, given by
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017038.png" /></td> </tr></table>
+
$$
 
+
T_{\mathrm{P}}(x,y) = x \cdot y \ ;
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017039.png" /></td> </tr></table>
+
$$
 
+
$$
iii) the Lukasiewicz triangular norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017040.png" /> and Lukasiewicz triangular co-norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017041.png" />, given by
+
S_{\mathrm{P}}(x,y) = x+y - x\cdot y \ .
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017042.png" /></td> </tr></table>
+
iii) the Lukasiewicz triangular norm $T_{\mathrm{L}}$ and Lukasiewicz triangular co-norm $S_{\mathrm{L}}$, given by
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017043.png" /></td> </tr></table>
+
T_{\mathrm{L}}(x,y) = \max(x+y-1,0) \ ;
 
+
$$
iv) the weakest triangular norm (or drastic product) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017044.png" /> and strongest triangular co-norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017045.png" />, given by
+
$$
 
+
S_{\mathrm{L}}(x,y) = \min(x+y,1) \ .
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017046.png" /></td> </tr></table>
+
$$
 
+
iv) the weakest triangular norm (or drastic product) $T_{\mathrm{D}}$ and strongest triangular co-norm $S_{\mathrm{D}}$, given by
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017047.png" /></td> </tr></table>
+
$$
 
+
T_{\mathrm{D}}(x,y) = \begin{cases} y & \text{if}\ x = 1 \\ x & \text{if}\,  y = 1 \\ 0 & \text{otherwise} \end{cases} \ ;
 +
$$
 +
$$
 +
S_{\mathrm{D}}(x,y) = \begin{cases} y & \text{if}\ x = 0 \\ x & \text{if}\,  y = 0 \\ 1 & \text{otherwise} \end{cases} \ .
 +
$$
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017048.png" /> be a family of triangular norms and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017049.png" /> be a family of pairwise disjoint open subintervals of the unit interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017050.png" /> (i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017051.png" /> is an at most countable index set). Consider the linear transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017052.png" /> given by
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017048.png" /> be a family of triangular norms and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017049.png" /> be a family of pairwise disjoint open subintervals of the unit interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017050.png" /> (i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017051.png" /> is an at most countable index set). Consider the linear transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017052.png" /> given by
  

Revision as of 19:13, 27 December 2015

t-norm

A binary operation on the unit interval $[0,1]$, i.e., a function $T : [0,1]^2 \rightarrow [0,1]$ such that for all $x,y,z \in [0,1]$ the following four axioms are satisfied:

T1) (commutativity) $T(x,y) = T(y,x)$;

T2) (associativity) $T(x,T(y,z)) = T(T(x,y),z)$;

T3) (monotonicity) $T(x,y) \le T(x,z)$ whenever $y \le z$;

T4) (boundary condition) $T(x,1) = x$.

If $T$ is a triangular norm, then its dual triangular co-norm $S$ is given by $$ S(x,y) = 1 - T(1-x,1-y) \ . $$

A function $T : [0,1]^2 \rightarrow [0,1]$ is a triangular norm if and only if $([0,1], T, {\le})$ is a fully ordered commutative semi-group (cf. [a3] and $o$-group) with neutral element $1$ and annihilator $0$, where ${\le}$ is the usual order on $[0,1]$.

For each $I$-semi-group $([a,b],{\star})$, i.e. a semi-group in which the binary associative operation $\star$ on the closed subinterval $[a,b]$ of the extended real line is continuous and one of the boundary points of $[a,b]$ acts as a neutral element and the other one as an annihilator ([a6], [a7]), there exists a continuous triangular norm $T$ or a continuous triangular co-norm $S$ such that the linear transformation $\phi : [a,b] \rightarrow [0,1]$ given by $$ \phi : x \mapsto \frac{x-a}{b-a} $$ is an isomorphism between $([a,b],{\star})$ and either $([0,1],T)$ or $([0,1],S)$.

The following are the four basic triangular norms, together with their dual triangular co-norms:

i) the minimum $T_{\mathrm{M}}$ and maximum $S_{\mathrm{M}}$, given by $$ T_{\mathrm{M}}(x,y) = \min(x,y) \ ; $$ $$ S_{\mathrm{M}}(x,y) = \max(x,y) \ . $$ ii) the product $T_{\mathrm{P}}$ and probabilistic sum $S_{\mathrm{P}}$, given by $$ T_{\mathrm{P}}(x,y) = x \cdot y \ ; $$ $$ S_{\mathrm{P}}(x,y) = x+y - x\cdot y \ . $$ iii) the Lukasiewicz triangular norm $T_{\mathrm{L}}$ and Lukasiewicz triangular co-norm $S_{\mathrm{L}}$, given by $$ T_{\mathrm{L}}(x,y) = \max(x+y-1,0) \ ; $$ $$ S_{\mathrm{L}}(x,y) = \min(x+y,1) \ . $$ iv) the weakest triangular norm (or drastic product) $T_{\mathrm{D}}$ and strongest triangular co-norm $S_{\mathrm{D}}$, given by $$ T_{\mathrm{D}}(x,y) = \begin{cases} y & \text{if}\ x = 1 \\ x & \text{if}\, y = 1 \\ 0 & \text{otherwise} \end{cases} \ ; $$ $$ S_{\mathrm{D}}(x,y) = \begin{cases} y & \text{if}\ x = 0 \\ x & \text{if}\, y = 0 \\ 1 & \text{otherwise} \end{cases} \ . $$ Let be a family of triangular norms and let be a family of pairwise disjoint open subintervals of the unit interval (i.e., is an at most countable index set). Consider the linear transformations given by

Then the function defined by

is a triangular norm, which is called the ordinal sum of the summands , .

The following representations hold ([a1], [a5], [a6]):

A function is a continuous Archimedean triangular norm, i.e., for all one has , if and only if there exists a continuous, strictly decreasing function with such that for all ,

The function is then called an additive generator of ; it is uniquely determined by up to a positive multiplicative constant.

is a continuous triangular norm if and only if is an ordinal sum whose summands are continuous Archimedean triangular norms.

Triangular norms are applied in many fields, such as probabilistic metric spaces [a9], [a4], fuzzy sets, fuzzy logics and their applications [a4], the theory of generalized measures [a2], [a8], functional equations [a1] and in non-linear differential and difference equations (see [a4], [a8]).

References

[a1] J. Aczél, "Lectures on functional equations and their applications" , Acad. Press (1969)
[a2] D. Butnariu, E.P. Klement, "Triangular norm-based measures and games with fuzzy coalitions" , Kluwer Acad. Publ. (1993)
[a3] L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963) Zbl 0137.02001
[a4] E.P. Klement, R. Mesiar, E. Pap, "Triangular norms" Trends in Logic--Studia Logica Library 8 Kluwer Academic ISBN 0-7923-6416-3 Zbl 0972.03002
[a5] C.M. Ling, "Representation of associative functions" Publ. Math. Debrecen , 12 (1965) pp. 189–212
[a6] P.S. Mostert, A.L. Shields, "On the structure of semigroups on a compact manifold with boundary" Ann. of Math. , 65 (1957) pp. 117–143
[a7] A.B. Paalman-de Miranda, "Topological semigroups" , Tracts , 11 , Math. Centre Amsterdam (1970)
[a8] E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. &Ister Sci. (1995)
[a9] B. Schweizer, A. Sklar, "Probabilistic metric spaces" , North-Holland (1983)
How to Cite This Entry:
Triangular norm. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Triangular_norm&oldid=37117
This article was adapted from an original article by E. Pap (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article