Namespaces
Variants
Actions

Difference between revisions of "Transition function"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
t0937601.png
 +
$#A+1 = 79 n = 0
 +
$#C+1 = 79 : ~/encyclopedia/old_files/data/T093/T.0903760 Transition function,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''transition probability''
 
''transition probability''
  
A family of measures used in the theory of Markov processes for determining the distribution at future instants from known states at previous times. Let a measurable space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937601.png" /> be such that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937602.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937603.png" /> contains all one-point subsets from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937604.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937605.png" /> be a subset of the real line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937606.png" />. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937607.png" /> given for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937608.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937609.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376011.png" /> is called a transition function for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376012.png" /> if: a) for given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376015.png" />, it is a measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376016.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376017.png" />; b) for given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376020.png" />, it is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376021.png" />-measurable function of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376022.png" />; c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376023.png" /> and for all limit points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376024.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376025.png" /> from the right in the topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376026.png" />,
+
{{MSC|60J35}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376027.png" /></td> </tr></table>
+
[[Category:Markov processes]]
  
and d) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376030.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376031.png" />, the Kolmogorov–Chapman equation is fulfilled:
+
A family of measures used in the theory of Markov processes for determining the distribution at future instants from known states at previous times. Let a measurable space  $  ( E, {\mathcal B}) $
 +
be such that the  $  \sigma $-
 +
algebra  $  {\mathcal B} $
 +
contains all one-point subsets from  $  E $,
 +
and let  $  T $
 +
be a subset of the real line  $  \mathbf R $.
 +
A function  $  P( s, x;  t, B) $
 +
given for $  s, t \in T $,  
 +
$  s \leq  t $,
 +
$  x \in E $
 +
and $  B \in {\mathcal B} $
 +
is called a transition function for  $  ( E, {\mathcal B}) $
 +
if: a) for given  $  s $,
 +
$  x $
 +
and  $  t $,
 +
it is a measure on  $  {\mathcal B} $,
 +
with  $  P( s, x;  t, B) \leq  1 $;
 +
b) for given  $  s $,
 +
t $
 +
and  $  B $,  
 +
it is a  $  {\mathcal B} $-
 +
measurable function of the point  $  x $;
 +
c)  $  P( s, x;  s, \{ x \} ) \equiv 1 $
 +
and for all limit points  $  s $
 +
of  $  T $
 +
from the right in the topology of  $  \mathbf R $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376032.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$
 +
\lim\limits _ {\begin{array}{c}
 +
t\downarrow s \\
 +
t \in T
 +
\end{array}
 +
}  P( s, x; t, E)  = 1;
 +
$$
  
(in some cases, requirement c) may be omitted or weakened). A transition function is called a Markov transition function if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376033.png" />, and a subMarkov transition function otherwise. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376034.png" /> is at most countable, then the transition function is specified by means of the matrix of transition probabilities
+
and d) for all  $  x \in E $,  
 +
$  B \in {\mathcal B} $
 +
and $  s \leq  t \leq  u $
 +
from  $  T $,  
 +
the Kolmogorov–Chapman equation is fulfilled:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376035.png" /></td> </tr></table>
+
$$ \tag{* }
 +
P( s, x; u , B)  = \int\limits _ { E } P( s, x; t, dy) P( t, y; u , B)
 +
$$
  
(see [[Transition probabilities|Transition probabilities]]; [[Matrix of transition probabilities|Matrix of transition probabilities]]). It often happens that for any admissible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376038.png" /> the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376039.png" /> has a density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376040.png" /> with respect to a certain measure. If in this case the following form of equation (*) is satisfied:
+
(in some cases, requirement c) may be omitted or weakened). A transition function is called a Markov transition function if  $  P( s, x;  t, E) \equiv 1 $,  
 +
and a subMarkov transition function otherwise. If $  E $
 +
is at most countable, then the transition function is specified by means of the matrix of transition probabilities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376041.png" /></td> </tr></table>
+
$$
 +
P  ^ {st}  = \| P _ {xy} ( s, t) \|
 +
$$
  
for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376043.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376045.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376046.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376047.png" /> is called a transition density.
+
(see [[Transition probabilities|Transition probabilities]]; [[Matrix of transition probabilities|Matrix of transition probabilities]]). It often happens that for any admissible  $  s $,
 +
$  x $
 +
and t $
 +
the measure  $  P( s, x;  t, \cdot ) $
 +
has a density  $  p( s, x;  t, \cdot ) $
 +
with respect to a certain measure. If in this case the following form of equation (*) is satisfied:
  
Under very general conditions (cf. [[#References|[1]]], [[#References|[2]]]), the transition function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376048.png" /> can be related to a Markov process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376049.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376050.png" /> (in the case of a Markov transition function, this process does not terminate, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376051.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376052.png" />-a.s.). On the other hand, the Markov property for a random process enables one, as a rule, to put the process into correspondence with a transition function [[#References|[3]]].
+
$$
 +
p( s, x;  u , z) = \int\limits _ { E } p( s, x;  t, y) p( t, y;  u , z)  dy
 +
$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376053.png" /> be homogeneous in the sense that the set of values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376054.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376055.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376056.png" /> forms a semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376057.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376058.png" /> under addition (for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376060.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376061.png" />). If, moreover, the transition function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376062.png" /> depends only on the difference <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376063.png" />, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376064.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376065.png" /> is a function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376066.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376067.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376068.png" /> satisfying the corresponding form of conditions a)–d), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376069.png" /> is called a homogeneous transition function. The latter name is also given to a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376070.png" /> for which (*) takes the form
+
for any  $  x $
 +
and  $  z $
 +
from  $  E $
 +
and  $  s \leq  t \leq  u $
 +
from $  T $,
 +
then  $  p( s, x;  t, y) $
 +
is called a transition density.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376071.png" /></td> </tr></table>
+
Under very general conditions (cf. {{Cite|N}}, {{Cite|GS}}), the transition function  $  P( s, x;  t, B) $
 +
can be related to a Markov process  $  X = ( x _ {t} , \zeta , {\mathcal F} _ {t}  ^ {s} , {\mathsf P} _ {s,x} ) $
 +
for which  $  {\mathsf P} _ {s,x} \{ x _ {t} \in B \} = P( s, x; t, B) $(
 +
in the case of a Markov transition function, this process does not terminate, i.e.  $  \zeta = \infty $
 +
$  P _ {s,x} $-
 +
a.s.). On the other hand, the Markov property for a random process enables one, as a rule, to put the process into correspondence with a transition function {{Cite|K}}.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376072.png" /></td> </tr></table>
+
Let  $  T $
 +
be homogeneous in the sense that the set of values of  $  t- s $
 +
for  $  s \leq  t $
 +
from  $  T $
 +
forms a semi-group  $  \widetilde{T}  $
 +
in  $  \mathbf R $
 +
under addition (for example,  $  T = \mathbf R $,
 +
$  T = \{ {t \in \mathbf R } : {t \geq  0 } \} $,
 +
$  T = \{ 0, 1 ,\dots \} $).
 +
If, moreover, the transition function  $  P( s, x; t, B) $
 +
depends only on the difference  $  t- s $,
 +
i.e. if  $  P( s, x; t, B) = P( t- s, x, B) $,
 +
where  $  P( t, x, B) $
 +
is a function of  $  t \in \widetilde{T}  $,
 +
$  x \in E $,
 +
$  B \in {\mathcal B} $
 +
satisfying the corresponding form of conditions a)–d), then  $  P( s, x;  t, B) $
 +
is called a homogeneous transition function. The latter name is also given to a function  $  P( t, x, B) $
 +
for which (*) takes the form
  
For certain purposes (such as regularizing transition functions) it is necessary to extend the definition. For example, one takes as given a family of measurable spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376074.png" />, while a transition function with respect to this family is defined as a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376075.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376076.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376079.png" />, that satisfies a suitable modification of conditions a)–d).
+
$$
 +
P( t+ s, x, B)  = \int\limits _ { E } P( t, x, dy) P( s, y, B),
 +
$$
  
====References====
+
$$
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Neveu, "Bases mathématiques du calcul des probabilités" , Masson (1970) {{MR|0272004}} {{ZBL|0203.49901}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , '''2''' , Springer (1975) (Translated from Russian) {{MR|0375463}} {{ZBL|0305.60027}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.E. Kuznetsov, "Any Markov process in a Borel space has a transition function" ''Theory Probab. Appl.'' , '''25''' : 2 (1980) pp. 384–388 ''Teor. Veroyatnost. i ee Primenen.'' , '''25''' : 2 (1980) pp. 389–393 {{MR|0572574}} {{ZBL|0456.60077}} {{ZBL|0431.60071}} </TD></TR></table>
+
s, t  \in  \widetilde{T} ,\  x  \in  E ,\  B  \in {\mathcal B} .
 +
$$
  
 +
For certain purposes (such as regularizing transition functions) it is necessary to extend the definition. For example, one takes as given a family of measurable spaces  $  ( E _ {t} , {\mathcal B} _ {t} ) $,
 +
$  t \in T $,
 +
while a transition function with respect to this family is defined as a function  $  P( s, x;  t, B) $,
 +
where  $  s, t \in T $,
 +
$  s \leq  t $,
 +
$  x \in E _ {s} $,
 +
$  B \in {\mathcal B} _ {t} $,
 +
that satisfies a suitable modification of conditions a)–d).
  
 +
====References====
 +
{|
 +
|valign="top"|{{Ref|N}}|| J. Neveu, "Bases mathématiques du calcul des probabilités" , Masson (1970) {{MR|0272004}} {{ZBL|0203.49901}}
 +
|-
 +
|valign="top"|{{Ref|GS}}|| I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , '''2''' , Springer (1975) (Translated from Russian) {{MR|0375463}} {{ZBL|0305.60027}}
 +
|-
 +
|valign="top"|{{Ref|K}}|| S.E. Kuznetsov, "Any Markov process in a Borel space has a transition function" ''Theory Probab. Appl.'' , '''25''' : 2 (1980) pp. 384–388 ''Teor. Veroyatnost. i ee Primenen.'' , '''25''' : 2 (1980) pp. 389–393 {{MR|0572574}} {{ZBL|0456.60077}} {{ZBL|0431.60071}}
 +
|}
  
 
====Comments====
 
====Comments====
Line 38: Line 146:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Dellacherie, P.A. Meyer, "Probabilities and potential" , '''1–3''' , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French) {{MR|0939365}} {{MR|0898005}} {{MR|0727641}} {{MR|0745449}} {{MR|0566768}} {{MR|0521810}} {{ZBL|0716.60001}} {{ZBL|0494.60002}} {{ZBL|0494.60001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.J. Sharpe, "General theory of Markov processes" , Acad. Press (1988) {{MR|0958914}} {{ZBL|0649.60079}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Albeverio, Z.M. Ma, "A note on quasicontinuous kernels representing quasilinear positive maps" ''Forum Math.'' , '''3''' (1991) pp. 389–400</TD></TR></table>
+
{|
 +
|valign="top"|{{Ref|DM}}|| C. Dellacherie, P.A. Meyer, "Probabilities and potential" , '''1–3''' , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French) {{MR|0939365}} {{MR|0898005}} {{MR|0727641}} {{MR|0745449}} {{MR|0566768}} {{MR|0521810}} {{ZBL|0716.60001}} {{ZBL|0494.60002}} {{ZBL|0494.60001}}
 +
|-
 +
|valign="top"|{{Ref|S}}|| M.J. Sharpe, "General theory of Markov processes" , Acad. Press (1988) {{MR|0958914}} {{ZBL|0649.60079}}
 +
|-
 +
|valign="top"|{{Ref|AM}}|| S. Albeverio, Z.M. Ma, "A note on quasicontinuous kernels representing quasilinear positive maps" ''Forum Math.'' , '''3''' (1991) pp. 389–400
 +
|}

Latest revision as of 08:26, 6 June 2020


transition probability

2020 Mathematics Subject Classification: Primary: 60J35 [MSN][ZBL]

A family of measures used in the theory of Markov processes for determining the distribution at future instants from known states at previous times. Let a measurable space $ ( E, {\mathcal B}) $ be such that the $ \sigma $- algebra $ {\mathcal B} $ contains all one-point subsets from $ E $, and let $ T $ be a subset of the real line $ \mathbf R $. A function $ P( s, x; t, B) $ given for $ s, t \in T $, $ s \leq t $, $ x \in E $ and $ B \in {\mathcal B} $ is called a transition function for $ ( E, {\mathcal B}) $ if: a) for given $ s $, $ x $ and $ t $, it is a measure on $ {\mathcal B} $, with $ P( s, x; t, B) \leq 1 $; b) for given $ s $, $ t $ and $ B $, it is a $ {\mathcal B} $- measurable function of the point $ x $; c) $ P( s, x; s, \{ x \} ) \equiv 1 $ and for all limit points $ s $ of $ T $ from the right in the topology of $ \mathbf R $,

$$ \lim\limits _ {\begin{array}{c} t\downarrow s \\ t \in T \end{array} } P( s, x; t, E) = 1; $$

and d) for all $ x \in E $, $ B \in {\mathcal B} $ and $ s \leq t \leq u $ from $ T $, the Kolmogorov–Chapman equation is fulfilled:

$$ \tag{* } P( s, x; u , B) = \int\limits _ { E } P( s, x; t, dy) P( t, y; u , B) $$

(in some cases, requirement c) may be omitted or weakened). A transition function is called a Markov transition function if $ P( s, x; t, E) \equiv 1 $, and a subMarkov transition function otherwise. If $ E $ is at most countable, then the transition function is specified by means of the matrix of transition probabilities

$$ P ^ {st} = \| P _ {xy} ( s, t) \| $$

(see Transition probabilities; Matrix of transition probabilities). It often happens that for any admissible $ s $, $ x $ and $ t $ the measure $ P( s, x; t, \cdot ) $ has a density $ p( s, x; t, \cdot ) $ with respect to a certain measure. If in this case the following form of equation (*) is satisfied:

$$ p( s, x; u , z) = \int\limits _ { E } p( s, x; t, y) p( t, y; u , z) dy $$

for any $ x $ and $ z $ from $ E $ and $ s \leq t \leq u $ from $ T $, then $ p( s, x; t, y) $ is called a transition density.

Under very general conditions (cf. [N], [GS]), the transition function $ P( s, x; t, B) $ can be related to a Markov process $ X = ( x _ {t} , \zeta , {\mathcal F} _ {t} ^ {s} , {\mathsf P} _ {s,x} ) $ for which $ {\mathsf P} _ {s,x} \{ x _ {t} \in B \} = P( s, x; t, B) $( in the case of a Markov transition function, this process does not terminate, i.e. $ \zeta = \infty $ $ P _ {s,x} $- a.s.). On the other hand, the Markov property for a random process enables one, as a rule, to put the process into correspondence with a transition function [K].

Let $ T $ be homogeneous in the sense that the set of values of $ t- s $ for $ s \leq t $ from $ T $ forms a semi-group $ \widetilde{T} $ in $ \mathbf R $ under addition (for example, $ T = \mathbf R $, $ T = \{ {t \in \mathbf R } : {t \geq 0 } \} $, $ T = \{ 0, 1 ,\dots \} $). If, moreover, the transition function $ P( s, x; t, B) $ depends only on the difference $ t- s $, i.e. if $ P( s, x; t, B) = P( t- s, x, B) $, where $ P( t, x, B) $ is a function of $ t \in \widetilde{T} $, $ x \in E $, $ B \in {\mathcal B} $ satisfying the corresponding form of conditions a)–d), then $ P( s, x; t, B) $ is called a homogeneous transition function. The latter name is also given to a function $ P( t, x, B) $ for which (*) takes the form

$$ P( t+ s, x, B) = \int\limits _ { E } P( t, x, dy) P( s, y, B), $$

$$ s, t \in \widetilde{T} ,\ x \in E ,\ B \in {\mathcal B} . $$

For certain purposes (such as regularizing transition functions) it is necessary to extend the definition. For example, one takes as given a family of measurable spaces $ ( E _ {t} , {\mathcal B} _ {t} ) $, $ t \in T $, while a transition function with respect to this family is defined as a function $ P( s, x; t, B) $, where $ s, t \in T $, $ s \leq t $, $ x \in E _ {s} $, $ B \in {\mathcal B} _ {t} $, that satisfies a suitable modification of conditions a)–d).

References

[N] J. Neveu, "Bases mathématiques du calcul des probabilités" , Masson (1970) MR0272004 Zbl 0203.49901
[GS] I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , 2 , Springer (1975) (Translated from Russian) MR0375463 Zbl 0305.60027
[K] S.E. Kuznetsov, "Any Markov process in a Borel space has a transition function" Theory Probab. Appl. , 25 : 2 (1980) pp. 384–388 Teor. Veroyatnost. i ee Primenen. , 25 : 2 (1980) pp. 389–393 MR0572574 Zbl 0456.60077 Zbl 0431.60071

Comments

For additional references see also Markov chain; Markov process.

References

[DM] C. Dellacherie, P.A. Meyer, "Probabilities and potential" , 1–3 , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French) MR0939365 MR0898005 MR0727641 MR0745449 MR0566768 MR0521810 Zbl 0716.60001 Zbl 0494.60002 Zbl 0494.60001
[S] M.J. Sharpe, "General theory of Markov processes" , Acad. Press (1988) MR0958914 Zbl 0649.60079
[AM] S. Albeverio, Z.M. Ma, "A note on quasicontinuous kernels representing quasilinear positive maps" Forum Math. , 3 (1991) pp. 389–400
How to Cite This Entry:
Transition function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transition_function&oldid=23670
This article was adapted from an original article by M.G. Shur (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article