Namespaces
Variants
Actions

Difference between revisions of "Tournament"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
An oriented graph (cf. also [[Graph, oriented|Graph, oriented]]) without loops, each pair of vertices of which are joined by an arc in exactly one direction. A tournament with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t0935201.png" /> vertices can be regarded as the outcome of a competition with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t0935202.png" /> players, the rules of which forbid draws. The notion of a tournament is used for ordering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t0935203.png" /> objects by the method of pairwise comparison. In this connection it finds application in biology, sociology, etc.
+
<!--
 +
t0935201.png
 +
$#A+1 = 65 n = 0
 +
$#C+1 = 65 : ~/encyclopedia/old_files/data/T093/T.0903520 Tournament
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A tournament is said to be transitive if its vertices can be indexed by the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t0935204.png" /> in such a way that there is an arc going from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t0935205.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t0935206.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t0935207.png" />. There are no circuits in a transitive tournament. A tournament is said to be strong if for any ordered pair of vertices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t0935208.png" /> there exists a directed path from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t0935209.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352010.png" />. A set of arcs in a tournament is called compatible if there are no circuits in the subgraph formed by these arcs and the vertices incident to them. The maximum cardinality of a set of compatible arcs is a measure of compatibility in the definition of  "the winner"  of the tournament. Every tournament contains a subset of compatible arcs of cardinality not less than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352011.png" />. Another measure of compatibility is the ratio of the number of transitive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352012.png" />-vertex subtournaments of a tournament with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352013.png" /> vertices to the number of strong <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352014.png" />-vertex subtournaments. The maximum number of strong <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352015.png" />-vertex subtournaments of a tournament with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352016.png" /> vertices is equal to
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352017.png" /></td> </tr></table>
+
An oriented graph (cf. also [[Graph, oriented|Graph, oriented]]) without loops, each pair of vertices of which are joined by an arc in exactly one direction. A tournament with  $  n $
 +
vertices can be regarded as the outcome of a competition with  $  n $
 +
players, the rules of which forbid draws. The notion of a tournament is used for ordering  $  n $
 +
objects by the method of pairwise comparison. In this connection it finds application in biology, sociology, etc.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352018.png" /></td> </tr></table>
+
A tournament is said to be transitive if its vertices can be indexed by the numbers  $  1 \dots n $
 +
in such a way that there is an arc going from  $  v _ {i} $
 +
to  $  v _ {j} $
 +
if and only if  $  i > j $.
 +
There are no circuits in a transitive tournament. A tournament is said to be strong if for any ordered pair of vertices  $  v _ {i} , v _ {j} $
 +
there exists a directed path from  $  v _ {i} $
 +
to  $  v _ {j} $.
 +
A set of arcs in a tournament is called compatible if there are no circuits in the subgraph formed by these arcs and the vertices incident to them. The maximum cardinality of a set of compatible arcs is a measure of compatibility in the definition of  "the winner" of the tournament. Every tournament contains a subset of compatible arcs of cardinality not less than  $  ( n  ^ {2} /4) ( 1 + o ( 1)) $.  
 +
Another measure of compatibility is the ratio of the number of transitive  $  k $-
 +
vertex subtournaments of a tournament with  $  n $
 +
vertices to the number of strong  $  k $-
 +
vertex subtournaments. The maximum number of strong  $  k $-
 +
vertex subtournaments of a tournament with  $  n $
 +
vertices is equal to
  
A tournament is strong if and only if it has a spanning cycle (Hamiltonian circuit). Every strong tournament with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352019.png" /> vertices has a circuit of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352020.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352021.png" />. Every tournament has a spanning path (Hamiltonian path).
+
$$
 +
\left ( \begin{array}{c}
 +
n \\
 +
k
 +
\end{array}
 +
\right ) - k
 +
\left ( \begin{array}{c}
 +
( n - 1)/2 \\
 +
k
 +
\end{array}
 +
\right ) \ \
 +
\textrm{ if }  n  \textrm{ is  odd  },
 +
$$
  
The outdegrees <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352022.png" /> of a tournament with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352023.png" /> vertices satisfy the equation
+
$$
 +
\left ( \begin{array}{c}
 +
n \\
 +
k
 +
\end{array}
 +
\right ) - {
 +
\frac{k}{2}
 +
} \left
 +
\{ \left ( \begin{array}{c}
 +
n/2 \\
 +
kh
 +
\end{array}
 +
\right ) - \left ( \begin{array}{c}
 +
( n - 2)/2 \\
 +
k - 1
 +
\end{array}
 +
\right ) \right \} \  \textrm{ if }  n  \textrm{ is  even  }.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352024.png" /></td> </tr></table>
+
A tournament is strong if and only if it has a spanning cycle (Hamiltonian circuit). Every strong tournament with  $  n $
 +
vertices has a circuit of length  $  k $
 +
for  $  k = 3 \dots n $.  
 +
Every tournament has a spanning path (Hamiltonian path).
  
Suppose that a set of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352025.png" /> satisfies the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352026.png" />. Then a tournament with outdegrees <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352027.png" /> exists if and only if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352028.png" /> the inequality
+
The outdegrees  $  d _ {i} $
 +
of a tournament with $  n $
 +
vertices satisfy the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352029.png" /></td> </tr></table>
+
$$
 +
\sum _ {i = 1 } ^ { n }  d _ {i}  ^ {2}  = \
 +
\sum _ {i = 1 } ^ { n }  ( n - d _ {i} )  ^ {2} .
 +
$$
  
holds, with equality for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352030.png" />. Furthermore, a tournament is strong if and only if
+
Suppose that a set of integers  $  ( d _ {1} \dots d _ {n} ) $
 +
satisfies the condition  $  0 \leq  d _ {1} \leq  \dots \leq  d _ {n} \leq  n - 1 $.  
 +
Then a tournament with outdegrees  $  d _ {1} \dots d _ {n} $
 +
exists if and only if for any  $  k = 1 \dots n - 1 $
 +
the inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352031.png" /></td> </tr></table>
+
$$
 +
\sum _ {i = 1 } ^ { k }  d _ {i}  \geq  {
 +
\frac{k ( k - 1) }{2}
 +
}
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352033.png" /> are two subtournaments of a tournament <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352034.png" /> and if there exists an arc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352035.png" /> for each pair of vertices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352036.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352038.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352039.png" />, then one writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352040.png" />. Suppose that the set of vertices of a tournament is partitioned into non-intersecting subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352041.png" />. Suppose further that either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352042.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352043.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352044.png" />. Then the partition defines an equivalence relation on the vertices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352045.png" />. A tournament is called simple if no non-trivial equivalence relation can be defined on its vertices. Every tournament with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352046.png" /> vertices is a subtournament of some simple tournament with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352047.png" /> vertices. A tournament <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352048.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352049.png" /> vertices is a subtournament of some simple tournament with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352050.png" /> vertices if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352051.png" /> is neither a circuit with three vertices nor a non-trivial transitive tournament with an odd number of vertices. The number of pairwise non-isomorphic tournaments with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352052.png" /> vertices is asymptotically equal to
+
holds, with equality for $  k = n $.  
 +
Furthermore, a tournament is strong if and only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352053.png" /></td> </tr></table>
+
$$
 +
\sum _ {i = 1 } ^ { k }  d _ {i}  > \
 +
{
 +
\frac{k ( k - 1) }{2}
 +
} \ \
 +
\textrm{ for }  k < n.
 +
$$
  
The number of distinct tournaments with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352054.png" /> indexed vertices is equal to
+
If  $  T _ {1} $
 +
and  $  T _ {2} $
 +
are two subtournaments of a tournament  $  T $
 +
and if there exists an arc  $  ( v  ^  \prime  , v  ^ {\prime\prime} ) $
 +
for each pair of vertices  $  v  ^  \prime  $
 +
in  $  T _ {1} $
 +
and  $  v  ^ {\prime\prime} $
 +
in  $  T _ {2} $,
 +
then one writes  $  T _ {1} \rightarrow T _ {2} $.
 +
Suppose that the set of vertices of a tournament is partitioned into non-intersecting subsets  $  T _ {1} \dots T _ {m} $.
 +
Suppose further that either  $  T _ {i} \rightarrow T _ {j} $
 +
or  $  T _ {j} \rightarrow T _ {i} $
 +
for  $  1 \leq  i \leq  j \leq  m $.
 +
Then the partition defines an equivalence relation on the vertices of  $  T $.
 +
A tournament is called simple if no non-trivial equivalence relation can be defined on its vertices. Every tournament with  $  n $
 +
vertices is a subtournament of some simple tournament with  $  n + 2 $
 +
vertices. A tournament  $  T $
 +
with  $  n $
 +
vertices is a subtournament of some simple tournament with  $  n + 1 $
 +
vertices if and only if  $  T $
 +
is neither a circuit with three vertices nor a non-trivial transitive tournament with an odd number of vertices. The number of pairwise non-isomorphic tournaments with $  n $
 +
vertices is asymptotically equal to
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352055.png" /></td> </tr></table>
+
$$
 +
{
 +
\frac{1}{n!}
 +
}
 +
2 ^ {\left ( \begin{array}{c}
 +
n \\
 +
2
 +
\end{array}
 +
\right ) } .
 +
$$
  
The generating functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352056.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352057.png" /> for tournaments and strong tournaments, respectively, are related by the formula:
+
The number of distinct tournaments with  $  n $
 +
indexed vertices is equal to
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352058.png" /></td> </tr></table>
+
$$
 +
2 ^ {\left ( \begin{array}{c}
 +
n \\
 +
2
 +
\end{array}
 +
\right ) } .
 +
$$
  
Every tournament with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352059.png" /> vertices, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352060.png" />, that is not strong is uniquely recoverable from the family of its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352061.png" />-vertex subtournaments.
+
The generating functions  $  t ( x) $
 +
and  $  s ( x) $
 +
for tournaments and strong tournaments, respectively, are related by the formula:
 +
 
 +
$$
 +
s ( x)  = 
 +
\frac{t ( x) }{1 + t ( x) }
 +
.
 +
$$
 +
 
 +
Every tournament with $  n $
 +
vertices, $  n \geq  5 $,  
 +
that is not strong is uniquely recoverable from the family of its $  ( n- 1) $-
 +
vertex subtournaments.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Harary,  "Graph theory" , Addison-Wesley  (1969)  pp. Chapt. 9</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.W. Moon,  "Topics on tournaments" , Holt, Rinehart &amp; Winston  (1968)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Harary,  "Graph theory" , Addison-Wesley  (1969)  pp. Chapt. 9</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.W. Moon,  "Topics on tournaments" , Holt, Rinehart &amp; Winston  (1968)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
A random tournament over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352062.png" /> is defined by making random choices of an arc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352063.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352064.png" /> for each pair of different vertices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093520/t09352065.png" />, the choice being equiprobable and independent for all different pairs. Cf. [[#References|[2]]] for many results on random tournaments.
+
A random tournament over $  N = \{ 1 \dots n \} $
 +
is defined by making random choices of an arc $  {x _ {i} x _ {j} } vec $
 +
or $  {x _ {j} x _ {i} } vec $
 +
for each pair of different vertices $  x _ {i} , x _ {j} $,  
 +
the choice being equiprobable and independent for all different pairs. Cf. [[#References|[2]]] for many results on random tournaments.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F. Harary,  L. Moser,  "The theory of round robin tournaments"  ''Amer. Math. Monthly'' , '''73'''  (1966)  pp. 231–246</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L. Comtet,  "Advanced combinatorics" , Reidel  (1974)  pp. 68ff  (Translated from French)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F. Harary,  L. Moser,  "The theory of round robin tournaments"  ''Amer. Math. Monthly'' , '''73'''  (1966)  pp. 231–246</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L. Comtet,  "Advanced combinatorics" , Reidel  (1974)  pp. 68ff  (Translated from French)</TD></TR></table>

Revision as of 08:26, 6 June 2020


An oriented graph (cf. also Graph, oriented) without loops, each pair of vertices of which are joined by an arc in exactly one direction. A tournament with $ n $ vertices can be regarded as the outcome of a competition with $ n $ players, the rules of which forbid draws. The notion of a tournament is used for ordering $ n $ objects by the method of pairwise comparison. In this connection it finds application in biology, sociology, etc.

A tournament is said to be transitive if its vertices can be indexed by the numbers $ 1 \dots n $ in such a way that there is an arc going from $ v _ {i} $ to $ v _ {j} $ if and only if $ i > j $. There are no circuits in a transitive tournament. A tournament is said to be strong if for any ordered pair of vertices $ v _ {i} , v _ {j} $ there exists a directed path from $ v _ {i} $ to $ v _ {j} $. A set of arcs in a tournament is called compatible if there are no circuits in the subgraph formed by these arcs and the vertices incident to them. The maximum cardinality of a set of compatible arcs is a measure of compatibility in the definition of "the winner" of the tournament. Every tournament contains a subset of compatible arcs of cardinality not less than $ ( n ^ {2} /4) ( 1 + o ( 1)) $. Another measure of compatibility is the ratio of the number of transitive $ k $- vertex subtournaments of a tournament with $ n $ vertices to the number of strong $ k $- vertex subtournaments. The maximum number of strong $ k $- vertex subtournaments of a tournament with $ n $ vertices is equal to

$$ \left ( \begin{array}{c} n \\ k \end{array} \right ) - k \left ( \begin{array}{c} ( n - 1)/2 \\ k \end{array} \right ) \ \ \textrm{ if } n \textrm{ is odd }, $$

$$ \left ( \begin{array}{c} n \\ k \end{array} \right ) - { \frac{k}{2} } \left \{ \left ( \begin{array}{c} n/2 \\ kh \end{array} \right ) - \left ( \begin{array}{c} ( n - 2)/2 \\ k - 1 \end{array} \right ) \right \} \ \textrm{ if } n \textrm{ is even }. $$

A tournament is strong if and only if it has a spanning cycle (Hamiltonian circuit). Every strong tournament with $ n $ vertices has a circuit of length $ k $ for $ k = 3 \dots n $. Every tournament has a spanning path (Hamiltonian path).

The outdegrees $ d _ {i} $ of a tournament with $ n $ vertices satisfy the equation

$$ \sum _ {i = 1 } ^ { n } d _ {i} ^ {2} = \ \sum _ {i = 1 } ^ { n } ( n - d _ {i} ) ^ {2} . $$

Suppose that a set of integers $ ( d _ {1} \dots d _ {n} ) $ satisfies the condition $ 0 \leq d _ {1} \leq \dots \leq d _ {n} \leq n - 1 $. Then a tournament with outdegrees $ d _ {1} \dots d _ {n} $ exists if and only if for any $ k = 1 \dots n - 1 $ the inequality

$$ \sum _ {i = 1 } ^ { k } d _ {i} \geq { \frac{k ( k - 1) }{2} } $$

holds, with equality for $ k = n $. Furthermore, a tournament is strong if and only if

$$ \sum _ {i = 1 } ^ { k } d _ {i} > \ { \frac{k ( k - 1) }{2} } \ \ \textrm{ for } k < n. $$

If $ T _ {1} $ and $ T _ {2} $ are two subtournaments of a tournament $ T $ and if there exists an arc $ ( v ^ \prime , v ^ {\prime\prime} ) $ for each pair of vertices $ v ^ \prime $ in $ T _ {1} $ and $ v ^ {\prime\prime} $ in $ T _ {2} $, then one writes $ T _ {1} \rightarrow T _ {2} $. Suppose that the set of vertices of a tournament is partitioned into non-intersecting subsets $ T _ {1} \dots T _ {m} $. Suppose further that either $ T _ {i} \rightarrow T _ {j} $ or $ T _ {j} \rightarrow T _ {i} $ for $ 1 \leq i \leq j \leq m $. Then the partition defines an equivalence relation on the vertices of $ T $. A tournament is called simple if no non-trivial equivalence relation can be defined on its vertices. Every tournament with $ n $ vertices is a subtournament of some simple tournament with $ n + 2 $ vertices. A tournament $ T $ with $ n $ vertices is a subtournament of some simple tournament with $ n + 1 $ vertices if and only if $ T $ is neither a circuit with three vertices nor a non-trivial transitive tournament with an odd number of vertices. The number of pairwise non-isomorphic tournaments with $ n $ vertices is asymptotically equal to

$$ { \frac{1}{n!} } 2 ^ {\left ( \begin{array}{c} n \\ 2 \end{array} \right ) } . $$

The number of distinct tournaments with $ n $ indexed vertices is equal to

$$ 2 ^ {\left ( \begin{array}{c} n \\ 2 \end{array} \right ) } . $$

The generating functions $ t ( x) $ and $ s ( x) $ for tournaments and strong tournaments, respectively, are related by the formula:

$$ s ( x) = \frac{t ( x) }{1 + t ( x) } . $$

Every tournament with $ n $ vertices, $ n \geq 5 $, that is not strong is uniquely recoverable from the family of its $ ( n- 1) $- vertex subtournaments.

References

[1] F. Harary, "Graph theory" , Addison-Wesley (1969) pp. Chapt. 9
[2] J.W. Moon, "Topics on tournaments" , Holt, Rinehart & Winston (1968)

Comments

A random tournament over $ N = \{ 1 \dots n \} $ is defined by making random choices of an arc $ {x _ {i} x _ {j} } vec $ or $ {x _ {j} x _ {i} } vec $ for each pair of different vertices $ x _ {i} , x _ {j} $, the choice being equiprobable and independent for all different pairs. Cf. [2] for many results on random tournaments.

References

[a1] F. Harary, L. Moser, "The theory of round robin tournaments" Amer. Math. Monthly , 73 (1966) pp. 231–246
[a2] L. Comtet, "Advanced combinatorics" , Reidel (1974) pp. 68ff (Translated from French)
How to Cite This Entry:
Tournament. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tournament&oldid=11816
This article was adapted from an original article by A.A. Sapozhenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article