Namespaces
Variants
Actions

Toeplitz operator

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Together with the class of Hankel operators (cf. also Hankel operator), the class of Toeplitz operators is one of the most important classes of operators on Hardy spaces. A Toeplitz operator can be defined as an operator on $\text{l} ^ { 2 }$ with matrix of the form $( \gamma _ { j - k } ) _ { j , k \geq 0 }$. The following boundedness criterion was obtained by P.R. Halmos (see [a1], [a5]): Let $\{ \gamma _ { j } \} _ { j \in \mathbf Z }$ be a sequence of complex numbers and let $T$ be the operator on $\text{l} ^ { 2 }$ with matrix $( \gamma _ { j - k } ) _ { j , k \geq 0 }$. Then $T$ is bounded if and only if there exists a function $\phi \in L ^ { \infty }$ on the unit circle $\bf T$ such that

\begin{equation*} \gamma _ { j } = \widehat { \phi } ( j ) , j \in \mathbf{Z}, \end{equation*}

where the $\hat { \phi } ( j )$, $j \in \mathbf{Z}$, are the Fourier coefficients of $\phi$ (cf. also Fourier series).

This theorem allows one to consider the following realization of Toeplitz operators on the Hardy class $H ^ { 2 }$ (cf. also Hardy classes). Let $\phi \in L ^ { \infty }$. One defines the Toeplitz operator $T _ { \phi } : H ^ { 2 } \rightarrow H ^ { 2 }$ by $T_{\phi}\,f = \mathcal{P}_{ +} \phi f$, where $\mathcal{P} _ { + }$ is the orthogonal projection onto $H ^ { 2 }$. The function $\phi$ is called the symbol of $T _ { \phi }$.

Toeplitz operators are important in many applications (prediction theory, boundary-value problems for analytic functions, singular integral equations). Toeplitz operators are unitarily equivalent to Wiener–Hopf operators (cf. also Wiener–Hopf operator). For a function $k \in L ^ { 1 } ( \mathbf{R} )$ one can define the Wiener–Hopf operator $W _ { k }$ on $L ^ { 2 } ( \mathbf{R} _ { + } )$ by

\begin{equation*} ( W _ { k } f ) ( t ) = \int _ { 0 } ^ { \infty } k ( t - s ) f ( s ) d s , t \in {\bf R} _ { + }. \end{equation*}

Then $\| W _ { k } \| = \| \mathcal{F} k \| _ { L^\infty } $, where $\mathcal{F}$ is the Fourier transform. The definition of Wiener–Hopf operators can be extended to the case when $k$ is a tempered distribution whose Fourier transform is in $L^{\infty}$. In this case, $W _ { k }$ is unitarily equivalent to the Toeplitz operator $T _ { \phi }$, where $\phi = ( \mathcal{F} k ) \circ \text{o}$ and $\text{o}$ is a conformal mapping from the unit disc onto the upper half-plane.

The mapping $\phi \mapsto T _ { \phi }$ defined on $L^{\infty}$ is linear but not multiplicative. In fact, $T _ { \phi \psi } = T _ { \phi } T _ { \psi }$ if and only if $\psi \in H ^ { \infty }$ or $\overline { \phi } \in H ^ { \infty }$ (Halmos' theorem, see [a1]). It is easy to see that $T _ { \phi } ^ { * } = T _ { \overline { \phi } }$.

It is important in applications to be able to solve Toeplitz equations $T _ { \phi } f = g$. Therefore one of the most important problems in the study of Toeplitz operators is to describe the spectrum $\sigma ( T _ { \phi } )$ and the essential spectrum $\sigma _ { e } ( T _ { \phi } )$ (cf. also Spectrum of an operator).

Unlike the case of arbitrary operators, a Toeplitz operator $T _ { \phi }$ is invertible if and only if it is Fredholm and its index $\operatorname{ind} T _ { \phi } = \operatorname { dim } \operatorname { Ker } T _ { \phi } - \operatorname { dim } \operatorname { Ker } T _ { \phi } ^ { * } = 0$. This is a consequence of the following lemma, which is due to L.A.. Coburn ([a1]): If $\phi$ is a non-zero function in $L^{\infty}$, then either $\operatorname{Ker} T _ { \phi } = \{ 0 \}$ or $\operatorname { Ker } T _ { \phi } ^ { * } = \{ 0 \}$.

Hence,

\begin{equation*} \sigma ( T _ { \phi } ) = \sigma _ { \operatorname{e} } ( T _ { \phi } ) \bigcup \{ \lambda \notin \sigma _ { \operatorname{e} } ( T _ { \phi } ) : \text { ind } T _ { \phi - \lambda } \neq 0 \}. \end{equation*}

The following elementary results can be found in [a1].

If $\phi \in H ^ { \infty }$, then $\sigma ( T _ { \phi } )$ is the closure of $\phi ( D )$, where $D$ is the open unit disc (Wintner's theorem). If $\phi \in L ^ { \infty }$, then

\begin{equation} \tag{a1} \mathcal{R} ( \phi ) \subset \sigma _ { e } ( T _ { \phi } ) \subset \sigma ( T _ { \phi } ) \subset \operatorname { conv } ( \mathcal{R} ( \phi ) ). \end{equation}

Here, $\mathcal{R} ( \phi )$ is the essential range of $\phi$ and $\operatorname{conv} ( E )$ is the convex hull of a set $E$. Note that (a1) is a combination of an improvement of a Hartman–Wintner theorem and a Brown–Halmos theorem.

The following theorem, which is also due to P. Hartman and A. Wintner, describes the spectrum of self-adjoint Toeplitz operators (see [a1]): If $\phi$ is a real function in $L^{\infty}$, then

\begin{equation*} \sigma ( T _ { \phi } ) = \operatorname { conv } ( \mathcal{R} ( \phi ) ) = [ \operatorname { essinf } \phi , \operatorname { esssup } \phi ]. \end{equation*}

The problem of the invertibility of an arbitrary Toeplitz operator can be reduced to the case when the symbol is unimodular, i.e., has modulus $1$ almost everywhere on $\bf T$. Namely, $T _ { \phi }$ is invertible if and only if $\phi$ is invertible in $L^{\infty}$ and the operator $ T _ { \phi / | \phi | }$ is invertible.

The following theorem is due to A. Devinatz, H. Widom and N.K. Nikol'skii, see [a1], [a5]: Let $u$ be a unimodular function on $\bf T$. Then

i) $T _ { u }$ is left invertible if and only if $\operatorname { dist } _ { L^\infty } ( u , H ^ { \infty } ) < 1$;

ii) $T _ { u }$ is right invertible if and only if $\operatorname { dist } _ { L ^ \infty } ( \overline { u } , H ^ { \infty } ) < 1$;

iii) if $T _ { u }$ is invertible and there exists a function $h \in H ^ { \infty }$ such that $\| u - h \| _ { L } \infty < 1$, then $h$ is invertible in $H ^ { \infty }$;

iv) $T _ { u }$ is invertible if and only if there exists an outer function (cf. also Hardy classes) $h \in H ^ { \infty }$ such that $\| u - h \| _ { L } \infty < 1$;

v) if $T _ { u }$ is left invertible, then $T _ { u }$ is invertible if and only if $T _ { z u}$ is not left invertible.

The following invertibility criterion was obtained independently by Widom and Devinatz, see [a1]: Let $\phi \in L ^ { \infty }$. Then $T _ { \phi }$ is invertible if and only if $\phi$ is invertible in $L^{\infty}$ and the unimodular function $\phi / | \phi |$ admits a representation

\begin{equation*} \frac { \phi } { | \phi | } = \operatorname { exp } ( \xi + \widetilde { \eta } + c ), \end{equation*}

where $\xi $ and $ \eta $ are real functions in $L^{\infty}$, $c \in \mathbf R$, and $\tilde { \eta }$ is the harmonic conjugate of $ \eta $ (cf. also Conjugate function).

Note that this theorem is equivalent to the Helson–Szegö theorem on weighted boundedness of the harmonic conjugation operator.

The following general result was obtained by Widom for $\sigma ( T _ { \phi } )$ and improved by R.G. Douglas for $\sigma _ { e } ( T _ { \phi } )$ (see [a1]): Let $\phi \in L ^ { \infty }$. Then $\sigma _ { e } ( T _ { \phi } )$ is a connected set. Consequently, $\sigma ( T _ { \phi } )$ is connected.

There is no geometric description of the spectrum of a general Toeplitz operator. However, for certain classes of functions $\phi$ there exist nice geometric descriptions (see [a1]). For instance, let $\phi \in C ( \mathbf{T} )$. Then $\sigma _ { e } ( T _ { \phi } ) = \phi ( \mathbf{T} )$. If $\lambda \notin \phi ( \mathbf{T} )$, then

\begin{equation*} \operatorname{ind} T _ { \phi - \lambda } = - \text { wind } ( \phi - \lambda ) \end{equation*}

where $\operatorname{wind}\, f$ is the winding number of $f$ with respect to the origin.

A similar result holds if $\phi$ belongs to the algebra $H ^ { \infty } + C = \{ f + g : f \in C ( \mathbf{T} ) , g \in H ^ { \infty } \}$ (Douglas' theorem, see [a1]): Let $\phi \in H ^ { \infty } + C$; then $T _ { \phi }$ is a Fredholm operator if and only if $\phi$ is invertible in $H ^ { \infty } + C$. If $T _ { \phi }$ is Fredholm, then

\begin{equation*} \operatorname{ind}T _ { \phi } = -\operatorname{wind} \phi. \end{equation*}

Note that if $\phi$ is invertible in $H ^ { \infty } + C$, then its harmonic extension to the unit disc $D$ is separated away from $0$ near the boundary $\bf T$ and $\operatorname{wind} \phi$ is, by definition, the winding number of the restriction of the harmonic extension of $\phi$ to a circle of radius sufficiently close to $1$.

There is a similar geometric description of $\sigma ( T _ { \phi } )$ for piecewise-continuous functions $\phi$ (the Devinatz–Widom theorem, see [a1]). In this case, instead of considering the curve $\phi$ one has to consider the curve obtained from $\phi$ by adding intervals that join the points $\operatorname { lim } _ { t \rightarrow 0 ^ { + } } \phi ( e ^ { i t } \zeta )$ and $\operatorname { lim } _ { t \rightarrow 0^{-} } \phi ( e ^ { i t } \zeta )$.

There are several local principles in the theory of Toeplitz operators. For $\phi , \psi \in L ^ { \infty }$, the local distance at $\lambda \in \bf{T}$ is defined by

\begin{equation*} \operatorname { dist } _ { \lambda } ( \phi , \psi ) = \operatorname { limsup } _ { \zeta \rightarrow \lambda } | \phi ( \zeta ) - \psi ( \zeta ) |. \end{equation*}

The Simonenko local principle (see [a5]) is as follows. Let $\phi \in L ^ { \infty }$. Suppose that for each $\lambda \in \bf{T}$ there exists a $\phi _ { \lambda } \in L ^ { \infty }$ such that $T _ { \phi _ { \lambda } }$ is Fredholm and $\operatorname { dist } _ { \lambda } ( \phi , \phi _ { \lambda } ) = 0$. Then $T _ { \phi }$ is Fredholm.

See [a1] for the Douglas localization principle.

If $\phi$ is a real $L^{\infty}$-function, the self-adjoint Toeplitz operator has absolutely continuous spectral measure ([a6]). In [a3] and [a7] an explicit description of the spectral type of $T _ { \phi }$ is given for $\phi \in L ^ { \infty }$.

It is important in applications to study vectorial Toeplitz operators $T _ { \Phi }$ with matrix-valued symbols $\Phi$. There are vectorial Fredholm Toeplitz operators $T _ { \Phi }$ with zero index which are not invertible. If $\Phi$ is a continuous matrix-valued function, then $T _ { \Phi }$ is Fredholm if and only if $\operatorname{det} \Phi$ is invertible in $C ( \mathbf{T} )$ and

\begin{equation*} \operatorname { ind }T_{\Phi} = -\operatorname {wind} \operatorname {det} \Phi . \end{equation*}

Similar results are valid for matrix-valued functions in $H ^ { \infty } + C$ and for piecewise-continuous matrix-valued functions (see [a2]).

The following Simonenko theorem (see [a4]) gives a criterion for vectorial Toeplitz operators to be Fredholm. Let $\Phi$ be an $( n \times n )$-matrix-valued $L^{\infty}$ function on $\bf T$. Then $T _ { \Phi }$ is Fredholm if and only if $\Phi$ admits a factorization

\begin{equation*} \Phi = \Psi _ { 2 } ^ { * } \wedge \Psi _ { 1 }, \end{equation*}

where $\Psi _ { 1 }$ and $\Psi _ { 2 }$ are matrix functions invertible in $H ^ { 2 }$,

\begin{equation*} \Lambda = \left( \begin{array} { c c c c } { z ^ { k _ { 1 } } } & { 0 } & { \ldots } & { 0 } \\ { 0 } & { z ^ { k_{2} } } & { \ldots } & { 0 } \\ { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { 0 } & { 0 } & { \ldots } & { z ^ { k _ { n } } } \end{array} \right) , k _ { 1 } , \ldots , k _ { n } \in \mathbf{Z}, \end{equation*}

and the operator $B$, defined on the set of polynomials in $H ^ { 2 } ( \mathbf{C} ^ { n } )$ by

\begin{equation*} B f = \Psi _ { 2 } ^ { - 1 } \mathcal{P} _ { + } \overline { \Lambda } \mathcal{P} _ { + } \overline { \Psi }^ {-1}_{1} f, \end{equation*}

extends to a bounded operator on $H ^ { 2 } ( \mathbf{C} ^ { n } )$.

References

[a1] R.G. Douglas, "Banach algebra techniques in operator theory" , Acad. Press (1972)
[a2] R.G. Douglas, "Banach algebra techniques in the theory of Toeplitz operators" , CBMS , 15 , Amer. Math. Soc. (1973)
[a3] R.S. Ismagilov, "On the spectrum of Toeplitz matrices" Dokl. Akad. Nauk SSSR , 149 (1963) pp. 769–772
[a4] G.S. Litvinchuk, I.M. Spitkovski, "Factorization of measurable matrix functions" , Oper. Th. Adv. Appl. , 25 , Birkhäuser (1987)
[a5] N.K. Nikol'skii, "Treatise on the shift operator" , Springer (1986)
[a6] M. Rosenblum, "The absolute continuity of Toeplitz's matrices" Pacific J. Math. , 10 (1960) pp. 987–996
[a7] M. Rosenblum, "A concrete spectral theory for self-adjoint Toeplitz operators" Amer. J. Math. , 87 (1965) pp. 709–718
How to Cite This Entry:
Toeplitz operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Toeplitz_operator&oldid=55526
This article was adapted from an original article by V.V. Peller (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article