Namespaces
Variants
Actions

Difference between revisions of "Stochastic integration via the Fock space of white noise"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 70 formulas out of 70 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
Consider the [[Probability space|probability space]] of (commutative) [[White noise|white noise]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202601.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202602.png" /> is the topological <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202603.png" />-algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202604.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202605.png" /> is the measure determined by
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202606.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
Out of 70 formulas, 70 were replaced by TEX code.-->
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202607.png" /> being the norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202608.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202609.png" /> denoting the dual pairing. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026010.png" /> is unitary to the symmetric [[Fock space|Fock space]]
+
{{TEX|semi-auto}}{{TEX|done}}
 +
Consider the [[Probability space|probability space]] of (commutative) [[White noise|white noise]] $( \mathcal{S} ^ { \prime } ( \mathbf{R} ) , \mathcal{B} , d \mu )$, where $\mathcal{B}$ is the topological $\sigma$-algebra of $\mathcal{S} ^ { \prime } ( \mathbf{R} )$ and $d \mu$ is the measure determined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026011.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
\begin{equation} \tag{a1} \int _ { {\cal S} ^ { \prime } ( {\bf R} ) } e ^ { i \langle x , \xi \rangle } d \mu ( x ) = e ^ { - \| \xi \| _ { 2 } ^ { 2 } / 2 } , \xi \in {\cal S} ( {\bf R} ) \end{equation}
  
One can identify the last two spaces and denotes the unitary mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026012.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026013.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026014.png" />.
+
$\| . \| _ { 2 }$ being the norm of $L ^ { 2 } ( \mathbf{R} , d t )$ and $\langle \, .\, ,\,  . \, \rangle$ denoting the dual pairing. $( L ^ { 2 } ) \equiv L ^ { 2 } ( \mathcal{S} ^ { \prime } ( \mathbf{R} ) , d \mu )$ is unitary to the symmetric [[Fock space|Fock space]]
  
Informally, one is looking for a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026016.png" /> of operators acting on the Fock space which implement the canonical commutation relations (cf. also [[Commutation and anti-commutation relationships, representation of|Commutation and anti-commutation relationships, representation of]])
+
\begin{equation} \tag{a2} \Gamma ( L ^ { 2 } ( \mathbf{R} ) ) = \bigoplus _ { n = 0 } ^ { \infty } \sqrt { n !} L ^ { 2 } ( \mathbf{R} )^{ \widehat { \bigotimes } n } \simeq \bigoplus _ { n = 0 } ^ { \infty } \sqrt { n !} \widehat{ L ^ { 2 } ( \mathbf{R} ^ { n } ) }. \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
One can identify the last two spaces and denotes the unitary mapping from $( L ^ { 2 } )$ onto $\Gamma ( L ^ { 2 } ( \mathbf{R} ^ { n } ) )$ by $\mathcal{S}$.
  
Still informally, this can be achieved as follows. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026020.png" />, set
+
Informally, one is looking for a pair $D _ { t }$, $D _ { t } ^ { * }$ of operators acting on the Fock space which implement the canonical commutation relations (cf. also [[Commutation and anti-commutation relationships, representation of|Commutation and anti-commutation relationships, representation of]])
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026021.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
\begin{equation} \tag{a3} [ D _ { t } , D _ { s } ^ { * } ] = \delta ( t - s ) , [ D _ { t } , D _ { s } ] = [ D _ { t } ^ { * } , D _ { s } ^ { * } ] = 0. \end{equation}
  
and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026022.png" /> be the informal adjoint, i.e.
+
Still informally, this can be achieved as follows. If $f \in \Gamma ( L ^ { 2 } ( \mathbf{R} ) )$, $f = ( f ^ { ( n ) } ) _ { n \in \mathbf{N} _ { 0 } }$, $f ^ { ( n ) } \in L ^ { 2 } \widehat { ( {\bf R} ^ { n } ) }$, set
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026023.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5)</td></tr></table>
+
\begin{equation} \tag{a4} D _ { t }\, f = \left( ( n + 1 )\, f ^ { ( n + 1 ) } ( t , \cdot ) \right) _ { n \in \mathbf{N} _ { 0 } } \end{equation}
  
This is made rigorous by introducing a suitable (complete) subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026024.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026025.png" /> with dual <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026026.png" />, so that one has a Gel'fand triple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026027.png" /> (cf. also [[Gel'fand representation|Gel'fand representation]]) whose isomorphic pre-image gives the triple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026028.png" />. For choices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026029.png" />, see e.g. [[#References|[a5]]], [[#References|[a6]]], [[#References|[a7]]], [[#References|[a8]]], [[#References|[a9]]], [[#References|[a12]]]. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026031.png" />. Denote the corresponding operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026033.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026035.png" />, respectively. It turns out that multiplication by white noise is well-defined as an operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026036.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026037.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026038.png" /> [[#References|[a7]]], [[#References|[a8]]], [[#References|[a9]]]. In particular, [[Brownian motion|Brownian motion]] may be defined as
+
and let $D _ { t } ^ { * }$ be the informal adjoint, i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026039.png" /></td> </tr></table>
+
\begin{equation} \tag{a5} D_t^*f = ( 0 , \delta _ { t } \widehat { \bigotimes } f ^ { n } ) _ { n \in \bf N }. \end{equation}
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026040.png" /> being the Fock space vacuum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026041.png" />.
+
This is made rigorous by introducing a suitable (complete) subspace $\Gamma ^ { + }$ of $\Gamma ( L ^ { 2 } ( \mathbf{R} ) )$ with dual $\Gamma^-$, so that one has a Gel'fand triple $\Gamma ^ { - } \supset \Gamma ( L ^ { 2 } ( \mathbf{R} ) ) \supset \Gamma ^ { + }$ (cf. also [[Gel'fand representation|Gel'fand representation]]) whose isomorphic pre-image gives the triple $( L ^ { 2 } ) ^ { - } \supset ( L ^ { 2 } ) \supset ( L ^ { 2 } ) ^ { + }$. For choices of $\Gamma ^ { \pm }$, see e.g. [[#References|[a5]]], [[#References|[a6]]], [[#References|[a7]]], [[#References|[a8]]], [[#References|[a9]]], [[#References|[a12]]]. Then $D _ { t } : \Gamma ^ { + } \rightarrow ( L ^ { 2 } )$, $D _ { t } ^ { * } : ( L ^ { 2 } ) \rightarrow \Gamma ^ { - }$. Denote the corresponding operators on $( L ^ { 2 } ) ^ { + }$ and $( L ^ { 2 } )$ by $\partial_t$ and $\partial _ { t } ^ { * }$, respectively. It turns out that multiplication by white noise is well-defined as an operator from $( L ^ { 2 } ) ^ { + }$ into $( L ^ { 2 } ) ^ { - }$ by $\partial _ { t } ^ { * } + \partial _ { t }$ [[#References|[a7]]], [[#References|[a8]]], [[#References|[a9]]]. In particular, [[Brownian motion|Brownian motion]] may be defined as
  
Consider a process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026042.png" /> and assume for simplicity that this mapping is continuous. If one wishes to define the [[Stochastic integral|stochastic integral]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026043.png" /> with respect to Brownian motion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026045.png" />, then one may set for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026046.png" /> taking values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026047.png" />,
+
\begin{equation*} t \rightarrow \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s } ) 1 d s = \mathcal{S} ^ { - 1 } \left( \int _ { 0 } ^ { t } ( D _ { s } ^ { * } + D _ { s } ) \Omega d s \right), \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026048.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a6)</td></tr></table>
+
$\Omega$ being the Fock space vacuum $\Omega = ( 1,0 , \ldots )$.
  
following the heuristic idea that the  "time derivative of Brownian motion is white noise" . However, for most of the processes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026049.png" /> of interest (e.g. Brownian motion itself), one does not have <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026050.png" /> and therefore the second term on the right-hand side of (a6) would be ill-defined. Moreover, heuristic calculations show [[#References|[a9]]], [[#References|[a11]]] that one should replace the term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026051.png" /> in (a6) by a proper version of
+
Consider a process $\phi : [ 0,1 ] \rightarrow ( L ^ { 2 } )$ and assume for simplicity that this mapping is continuous. If one wishes to define the [[Stochastic integral|stochastic integral]] of $\phi$ with respect to Brownian motion $B ( t )$, $t \in {\bf R}_ +$, then one may set for $\phi$ taking values in $( L ^ { 2 } ) ^ { + }$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026052.png" /></td> </tr></table>
+
\begin{equation} \tag{a6} \int _ { 0 } ^ { t } \phi ( s ) d B ( s ) : = \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s } ) \phi ( s ) d s, \end{equation}
  
in order to reproduce the standard Itô integral (cf. also [[Itô formula|Itô formula]]). This extension of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026053.png" /> can be defined using a subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026054.png" />, constructed by means of the trace theorem of Sobolev spaces [[#References|[a9]]], [[#References|[a3]]]. So, put
+
following the heuristic idea that the "time derivative of Brownian motion is white noise" . However, for most of the processes $\phi$ of interest (e.g. Brownian motion itself), one does not have $\phi ( s ) \in ( L ^ { 2 } ) ^ { + }$ and therefore the second term on the right-hand side of (a6) would be ill-defined. Moreover, heuristic calculations show [[#References|[a9]]], [[#References|[a11]]] that one should replace the term $\partial _ { s } \phi ( s )$ in (a6) by a proper version of
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026055.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a7)</td></tr></table>
+
\begin{equation*} \partial _ { s + } \phi ( s ) = \operatorname { lim } _ { \epsilon \downarrow 0 } \partial _ { s + \epsilon } \phi ( s ) \end{equation*}
  
It can be shown [[#References|[a9]]] that for processes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026056.png" /> adapted to the filtration generated by Brownian motion, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026057.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026058.png" /> and that the resulting stochastic integral (a7) coincides with the Itô-integral of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026059.png" />. Thus, (a7) is an extension of Itô's integral to anticipating processes. Clearly, also the first term on the right-hand side of (a7) alone is an extension of the Itô-integral to non-adapted processes and it is the white noise formulation of the [[Skorokhod integral|Skorokhod integral]], cf. e.g. [[#References|[a10]]]. Also, using instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026060.png" /> an analogous operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026061.png" />, one obtains (an extension of) the Itô backward integral and the mean of both is (an extension of) the [[Stratonovich integral|Stratonovich integral]] [[#References|[a9]]], [[#References|[a3]]], [[#References|[a12]]].
+
in order to reproduce the standard Itô integral (cf. also [[Itô formula|Itô formula]]). This extension of the operator $\partial _ { s }$ can be defined using a subspace of $L ^ { 2 } ( [ 0,1 ] ; ( L ^ { 2 } ) )$, constructed by means of the trace theorem of Sobolev spaces [[#References|[a9]]], [[#References|[a3]]]. So, put
 +
 
 +
\begin{equation} \tag{a7} \int _ { 0 } ^ { t } \phi ( s ) d B ( s + ) : = \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s + } ) \phi ( s ) d s. \end{equation}
 +
 
 +
It can be shown [[#References|[a9]]] that for processes $\phi$ adapted to the filtration generated by Brownian motion, $\partial _ { s + } \phi ( s ) = 0$ for all $s \in [ 0,1 ]$ and that the resulting stochastic integral (a7) coincides with the Itô-integral of $\phi$. Thus, (a7) is an extension of Itô's integral to anticipating processes. Clearly, also the first term on the right-hand side of (a7) alone is an extension of the Itô-integral to non-adapted processes and it is the white noise formulation of the [[Skorokhod integral|Skorokhod integral]], cf. e.g. [[#References|[a10]]]. Also, using instead of $\partial _ { s +}$ an analogous operator $\partial _ { s- }$, one obtains (an extension of) the Itô backward integral and the mean of both is (an extension of) the [[Stratonovich integral|Stratonovich integral]] [[#References|[a9]]], [[#References|[a3]]], [[#References|[a12]]].
  
 
It has been shown in [[#References|[a3]]] that Itô's lemma holds for the extended forward integral in its usual form (cf. also [[#References|[a11]]]). The proof is completely based on Fock space methods, i.e. (a3). For the calculus of the Skorokhod integral, cf. [[#References|[a2]]], [[#References|[a10]]], [[#References|[a12]]].
 
It has been shown in [[#References|[a3]]] that Itô's lemma holds for the extended forward integral in its usual form (cf. also [[#References|[a11]]]). The proof is completely based on Fock space methods, i.e. (a3). For the calculus of the Skorokhod integral, cf. [[#References|[a2]]], [[#References|[a10]]], [[#References|[a12]]].
Line 46: Line 54:
 
Clearly one can define in the above way stochastic integrals (more precisely, stochastic differential forms) for processes with multi-dimensional time, or even with time parameter on manifolds, etc.
 
Clearly one can define in the above way stochastic integrals (more precisely, stochastic differential forms) for processes with multi-dimensional time, or even with time parameter on manifolds, etc.
  
Also, instead of the symmetric Fock space one may work with the anti-symmetric Fock space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026062.png" /> (or any other suitable [[Hilbert space|Hilbert space]] of functions) and use operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026064.png" /> which fulfil the canonical anti-commutation relations
+
Also, instead of the symmetric Fock space one may work with the anti-symmetric Fock space over $L ^ { 2 } ( \mathbf{R} )$ (or any other suitable [[Hilbert space|Hilbert space]] of functions) and use operators $A _ { t }$, $A _ { t } ^ { * }$ which fulfil the canonical anti-commutation relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026065.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a8)</td></tr></table>
+
\begin{equation} \tag{a8} \{ A_t , A _ { s } ^ { * } \} = \delta ( t - s ) , \{ A _ { t } , A _ { s } \} = \{ A _ { t } ^ { * } , A _ { s } ^ { * } \} = 0. \end{equation}
  
This way one arrives at the fermionic stochastic integration and its calculus, see e.g. [[#References|[a1]]], [[#References|[a4]]]. In particular, one may define a fermionic Brownian motion as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026066.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026067.png" /> is the Fock space vacuum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026068.png" />.
+
This way one arrives at the fermionic stochastic integration and its calculus, see e.g. [[#References|[a1]]], [[#References|[a4]]]. In particular, one may define a fermionic Brownian motion as $t \rightarrow \int _ { 0 } ^ { t } ( A _ { s } ^ { * } + A _ { s } ) \Omega d s$ where $\Omega$ is the Fock space vacuum $\Omega = ( 1,0,0 , \dots )$.
  
 
It is also possible to consider stochastic Volterra integral operators (cf. also [[Volterra equation|Volterra equation]])
 
It is also possible to consider stochastic Volterra integral operators (cf. also [[Volterra equation|Volterra equation]])
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026069.png" /></td> </tr></table>
+
\begin{equation*} \Phi ( t ) = \int _ { 0 } ^ { t } K ( t , s ) \phi ( s ) d B ( s + ) \end{equation*}
  
with stochastic kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026070.png" />.
+
with stochastic kernel $K$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D. Applebaum,  R.L. Hudson,  "Fermion diffusions"  ''J. Math. Phys.'' , '''25'''  (1984)  pp. 858–861</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Asch,  J. Potthoff,  "A generalization of Itô's lemma"  ''Proc. Japan Acad.'' , '''63A'''  (1987)  pp. 289–291</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Asch,  J. Potthoff,  "Itô's lemma without non-anticipatory conditions"  ''Probab. Th. Rel. Fields'' , '''88'''  (1991)  pp. 17–46</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  C. Barnett,  R.F. Streater,  I.F. Wilde,  "The Itô–Clifford integral"  ''J. Funct. Anal.'' , '''48'''  (1982)  pp. 172–212</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  T. Hida,  "Brownian motion" , Springer  (1980)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  T. Hida,  H.-H. Kuo,  J. Potthoff,  L. Streit,  "White noise: An infinite dimensional calculus" , Kluwer Acad. Publ.  (1993)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  I. Kubo,  S. Takenaka,  "Calculus on Gaussian white noise, I–IV"  ''Proc. Japan Acad.'' , '''56–58'''  (1980–1982)  pp. 376–380; 411–416; 433–437; 186–189</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  H.-H. Kuo,  "Brownian functionals and applications"  ''Acta Applic. Math.'' , '''1'''  (1983)  pp. 175–188</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  H.-H. Kuo,  A. Russek,  "White noise approach to stochastic integration"  ''J. Multivariate Anal.'' , '''24'''  (1988)  pp. 218–236</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  D. Nualart,  E. Pardoux,  "Stochastic calculus with anticipating integrands"  ''Th. Rel. Fields'' , '''78'''  (1988)  pp. 535–581</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  J. Potthoff,  "Stochastic integration in Hida's white noise calculus"  S. Albeverio (ed.)  D. Merlini (ed.) , ''Stochastic Processes, Physics and Geometry''  (1988)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  F. Russo,  P. Vallois,  "Forward, backward and symmetric stochastic integration"  ''Probab. Th. Rel. Fields'' , '''97'''  (1993)  pp. 403–421</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  D. Applebaum,  R.L. Hudson,  "Fermion diffusions"  ''J. Math. Phys.'' , '''25'''  (1984)  pp. 858–861</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  J. Asch,  J. Potthoff,  "A generalization of Itô's lemma"  ''Proc. Japan Acad.'' , '''63A'''  (1987)  pp. 289–291</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  J. Asch,  J. Potthoff,  "Itô's lemma without non-anticipatory conditions"  ''Probab. Th. Rel. Fields'' , '''88'''  (1991)  pp. 17–46</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  C. Barnett,  R.F. Streater,  I.F. Wilde,  "The Itô–Clifford integral"  ''J. Funct. Anal.'' , '''48'''  (1982)  pp. 172–212</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  T. Hida,  "Brownian motion" , Springer  (1980)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  T. Hida,  H.-H. Kuo,  J. Potthoff,  L. Streit,  "White noise: An infinite dimensional calculus" , Kluwer Acad. Publ.  (1993)</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  I. Kubo,  S. Takenaka,  "Calculus on Gaussian white noise, I–IV"  ''Proc. Japan Acad.'' , '''56–58'''  (1980–1982)  pp. 376–380; 411–416; 433–437; 186–189</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  H.-H. Kuo,  "Brownian functionals and applications"  ''Acta Applic. Math.'' , '''1'''  (1983)  pp. 175–188</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  H.-H. Kuo,  A. Russek,  "White noise approach to stochastic integration"  ''J. Multivariate Anal.'' , '''24'''  (1988)  pp. 218–236</td></tr><tr><td valign="top">[a10]</td> <td valign="top">  D. Nualart,  E. Pardoux,  "Stochastic calculus with anticipating integrands"  ''Th. Rel. Fields'' , '''78'''  (1988)  pp. 535–581</td></tr><tr><td valign="top">[a11]</td> <td valign="top">  J. Potthoff,  "Stochastic integration in Hida's white noise calculus"  S. Albeverio (ed.)  D. Merlini (ed.) , ''Stochastic Processes, Physics and Geometry''  (1988)</td></tr><tr><td valign="top">[a12]</td> <td valign="top">  F. Russo,  P. Vallois,  "Forward, backward and symmetric stochastic integration"  ''Probab. Th. Rel. Fields'' , '''97'''  (1993)  pp. 403–421</td></tr></table>

Latest revision as of 16:45, 1 July 2020

Consider the probability space of (commutative) white noise $( \mathcal{S} ^ { \prime } ( \mathbf{R} ) , \mathcal{B} , d \mu )$, where $\mathcal{B}$ is the topological $\sigma$-algebra of $\mathcal{S} ^ { \prime } ( \mathbf{R} )$ and $d \mu$ is the measure determined by

\begin{equation} \tag{a1} \int _ { {\cal S} ^ { \prime } ( {\bf R} ) } e ^ { i \langle x , \xi \rangle } d \mu ( x ) = e ^ { - \| \xi \| _ { 2 } ^ { 2 } / 2 } , \xi \in {\cal S} ( {\bf R} ) \end{equation}

$\| . \| _ { 2 }$ being the norm of $L ^ { 2 } ( \mathbf{R} , d t )$ and $\langle \, .\, ,\, . \, \rangle$ denoting the dual pairing. $( L ^ { 2 } ) \equiv L ^ { 2 } ( \mathcal{S} ^ { \prime } ( \mathbf{R} ) , d \mu )$ is unitary to the symmetric Fock space

\begin{equation} \tag{a2} \Gamma ( L ^ { 2 } ( \mathbf{R} ) ) = \bigoplus _ { n = 0 } ^ { \infty } \sqrt { n !} L ^ { 2 } ( \mathbf{R} )^{ \widehat { \bigotimes } n } \simeq \bigoplus _ { n = 0 } ^ { \infty } \sqrt { n !} \widehat{ L ^ { 2 } ( \mathbf{R} ^ { n } ) }. \end{equation}

One can identify the last two spaces and denotes the unitary mapping from $( L ^ { 2 } )$ onto $\Gamma ( L ^ { 2 } ( \mathbf{R} ^ { n } ) )$ by $\mathcal{S}$.

Informally, one is looking for a pair $D _ { t }$, $D _ { t } ^ { * }$ of operators acting on the Fock space which implement the canonical commutation relations (cf. also Commutation and anti-commutation relationships, representation of)

\begin{equation} \tag{a3} [ D _ { t } , D _ { s } ^ { * } ] = \delta ( t - s ) , [ D _ { t } , D _ { s } ] = [ D _ { t } ^ { * } , D _ { s } ^ { * } ] = 0. \end{equation}

Still informally, this can be achieved as follows. If $f \in \Gamma ( L ^ { 2 } ( \mathbf{R} ) )$, $f = ( f ^ { ( n ) } ) _ { n \in \mathbf{N} _ { 0 } }$, $f ^ { ( n ) } \in L ^ { 2 } \widehat { ( {\bf R} ^ { n } ) }$, set

\begin{equation} \tag{a4} D _ { t }\, f = \left( ( n + 1 )\, f ^ { ( n + 1 ) } ( t , \cdot ) \right) _ { n \in \mathbf{N} _ { 0 } } \end{equation}

and let $D _ { t } ^ { * }$ be the informal adjoint, i.e.

\begin{equation} \tag{a5} D_t^*f = ( 0 , \delta _ { t } \widehat { \bigotimes } f ^ { n } ) _ { n \in \bf N }. \end{equation}

This is made rigorous by introducing a suitable (complete) subspace $\Gamma ^ { + }$ of $\Gamma ( L ^ { 2 } ( \mathbf{R} ) )$ with dual $\Gamma^-$, so that one has a Gel'fand triple $\Gamma ^ { - } \supset \Gamma ( L ^ { 2 } ( \mathbf{R} ) ) \supset \Gamma ^ { + }$ (cf. also Gel'fand representation) whose isomorphic pre-image gives the triple $( L ^ { 2 } ) ^ { - } \supset ( L ^ { 2 } ) \supset ( L ^ { 2 } ) ^ { + }$. For choices of $\Gamma ^ { \pm }$, see e.g. [a5], [a6], [a7], [a8], [a9], [a12]. Then $D _ { t } : \Gamma ^ { + } \rightarrow ( L ^ { 2 } )$, $D _ { t } ^ { * } : ( L ^ { 2 } ) \rightarrow \Gamma ^ { - }$. Denote the corresponding operators on $( L ^ { 2 } ) ^ { + }$ and $( L ^ { 2 } )$ by $\partial_t$ and $\partial _ { t } ^ { * }$, respectively. It turns out that multiplication by white noise is well-defined as an operator from $( L ^ { 2 } ) ^ { + }$ into $( L ^ { 2 } ) ^ { - }$ by $\partial _ { t } ^ { * } + \partial _ { t }$ [a7], [a8], [a9]. In particular, Brownian motion may be defined as

\begin{equation*} t \rightarrow \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s } ) 1 d s = \mathcal{S} ^ { - 1 } \left( \int _ { 0 } ^ { t } ( D _ { s } ^ { * } + D _ { s } ) \Omega d s \right), \end{equation*}

$\Omega$ being the Fock space vacuum $\Omega = ( 1,0 , \ldots )$.

Consider a process $\phi : [ 0,1 ] \rightarrow ( L ^ { 2 } )$ and assume for simplicity that this mapping is continuous. If one wishes to define the stochastic integral of $\phi$ with respect to Brownian motion $B ( t )$, $t \in {\bf R}_ +$, then one may set for $\phi$ taking values in $( L ^ { 2 } ) ^ { + }$,

\begin{equation} \tag{a6} \int _ { 0 } ^ { t } \phi ( s ) d B ( s ) : = \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s } ) \phi ( s ) d s, \end{equation}

following the heuristic idea that the "time derivative of Brownian motion is white noise" . However, for most of the processes $\phi$ of interest (e.g. Brownian motion itself), one does not have $\phi ( s ) \in ( L ^ { 2 } ) ^ { + }$ and therefore the second term on the right-hand side of (a6) would be ill-defined. Moreover, heuristic calculations show [a9], [a11] that one should replace the term $\partial _ { s } \phi ( s )$ in (a6) by a proper version of

\begin{equation*} \partial _ { s + } \phi ( s ) = \operatorname { lim } _ { \epsilon \downarrow 0 } \partial _ { s + \epsilon } \phi ( s ) \end{equation*}

in order to reproduce the standard Itô integral (cf. also Itô formula). This extension of the operator $\partial _ { s }$ can be defined using a subspace of $L ^ { 2 } ( [ 0,1 ] ; ( L ^ { 2 } ) )$, constructed by means of the trace theorem of Sobolev spaces [a9], [a3]. So, put

\begin{equation} \tag{a7} \int _ { 0 } ^ { t } \phi ( s ) d B ( s + ) : = \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s + } ) \phi ( s ) d s. \end{equation}

It can be shown [a9] that for processes $\phi$ adapted to the filtration generated by Brownian motion, $\partial _ { s + } \phi ( s ) = 0$ for all $s \in [ 0,1 ]$ and that the resulting stochastic integral (a7) coincides with the Itô-integral of $\phi$. Thus, (a7) is an extension of Itô's integral to anticipating processes. Clearly, also the first term on the right-hand side of (a7) alone is an extension of the Itô-integral to non-adapted processes and it is the white noise formulation of the Skorokhod integral, cf. e.g. [a10]. Also, using instead of $\partial _ { s +}$ an analogous operator $\partial _ { s- }$, one obtains (an extension of) the Itô backward integral and the mean of both is (an extension of) the Stratonovich integral [a9], [a3], [a12].

It has been shown in [a3] that Itô's lemma holds for the extended forward integral in its usual form (cf. also [a11]). The proof is completely based on Fock space methods, i.e. (a3). For the calculus of the Skorokhod integral, cf. [a2], [a10], [a12].

Generalizations.

Clearly one can define in the above way stochastic integrals (more precisely, stochastic differential forms) for processes with multi-dimensional time, or even with time parameter on manifolds, etc.

Also, instead of the symmetric Fock space one may work with the anti-symmetric Fock space over $L ^ { 2 } ( \mathbf{R} )$ (or any other suitable Hilbert space of functions) and use operators $A _ { t }$, $A _ { t } ^ { * }$ which fulfil the canonical anti-commutation relations

\begin{equation} \tag{a8} \{ A_t , A _ { s } ^ { * } \} = \delta ( t - s ) , \{ A _ { t } , A _ { s } \} = \{ A _ { t } ^ { * } , A _ { s } ^ { * } \} = 0. \end{equation}

This way one arrives at the fermionic stochastic integration and its calculus, see e.g. [a1], [a4]. In particular, one may define a fermionic Brownian motion as $t \rightarrow \int _ { 0 } ^ { t } ( A _ { s } ^ { * } + A _ { s } ) \Omega d s$ where $\Omega$ is the Fock space vacuum $\Omega = ( 1,0,0 , \dots )$.

It is also possible to consider stochastic Volterra integral operators (cf. also Volterra equation)

\begin{equation*} \Phi ( t ) = \int _ { 0 } ^ { t } K ( t , s ) \phi ( s ) d B ( s + ) \end{equation*}

with stochastic kernel $K$.

References

[a1] D. Applebaum, R.L. Hudson, "Fermion diffusions" J. Math. Phys. , 25 (1984) pp. 858–861
[a2] J. Asch, J. Potthoff, "A generalization of Itô's lemma" Proc. Japan Acad. , 63A (1987) pp. 289–291
[a3] J. Asch, J. Potthoff, "Itô's lemma without non-anticipatory conditions" Probab. Th. Rel. Fields , 88 (1991) pp. 17–46
[a4] C. Barnett, R.F. Streater, I.F. Wilde, "The Itô–Clifford integral" J. Funct. Anal. , 48 (1982) pp. 172–212
[a5] T. Hida, "Brownian motion" , Springer (1980)
[a6] T. Hida, H.-H. Kuo, J. Potthoff, L. Streit, "White noise: An infinite dimensional calculus" , Kluwer Acad. Publ. (1993)
[a7] I. Kubo, S. Takenaka, "Calculus on Gaussian white noise, I–IV" Proc. Japan Acad. , 56–58 (1980–1982) pp. 376–380; 411–416; 433–437; 186–189
[a8] H.-H. Kuo, "Brownian functionals and applications" Acta Applic. Math. , 1 (1983) pp. 175–188
[a9] H.-H. Kuo, A. Russek, "White noise approach to stochastic integration" J. Multivariate Anal. , 24 (1988) pp. 218–236
[a10] D. Nualart, E. Pardoux, "Stochastic calculus with anticipating integrands" Th. Rel. Fields , 78 (1988) pp. 535–581
[a11] J. Potthoff, "Stochastic integration in Hida's white noise calculus" S. Albeverio (ed.) D. Merlini (ed.) , Stochastic Processes, Physics and Geometry (1988)
[a12] F. Russo, P. Vallois, "Forward, backward and symmetric stochastic integration" Probab. Th. Rel. Fields , 97 (1993) pp. 403–421
How to Cite This Entry:
Stochastic integration via the Fock space of white noise. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_integration_via_the_Fock_space_of_white_noise&oldid=12828
This article was adapted from an original article by J. Potthoff (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article