Spectral measure

From Encyclopedia of Mathematics
Revision as of 18:24, 22 April 2016 by Richard Pinch (talk | contribs) (TeX done)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A unitary homomorphism from some Boolean algebra of sets into the Boolean algebra of projection operators on a Banach space. Every operator $T$ on a Banach space $X$ defines a spectral measure on the set of open-and-closed subsets of its spectrum $\sigma(T)$ by the formula $$ E(\alpha) = \frac{1}{2 \pi i} \int_\Gamma (zI-T)^{-1} dz \ , $$ where $\Gamma$ is a Jordan curve separating $\alpha$ from $\sigma(T) \setminus \alpha$. Here, $TE(\alpha) = E(\alpha)T$ and $\sigma\left(T \downharpoonright_{E(\alpha)X}\right) \subseteq \bar\alpha$. The construction of spectral measures satisfying these conditions on wider classes of Boolean algebras of sets is one of the basic problems in the spectral theory of linear operators.


[1a] N. Dunford, J.T. Schwartz, "Linear operators. Spectral operators" , 3 , Interscience (1971)
[1b] N. Dunford, J.T. Schwartz, "Linear operators. Spectral theory" , 2 , Interscience (1963)
How to Cite This Entry:
Spectral measure. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by V.S. Shul'man (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article