Namespaces
Variants
Actions

Sector in the theory of ordinary differential equations

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An open curvilinear sector $ S $ with vertex at an isolated singular point $ O $ of an autonomous system of second-order ordinary differential equations

$$ \tag{* } \dot{x} = f ( x),\ \ x \in \mathbf R ^ {2} , $$

$ f \in C ( G) $, where $ G $ is the domain of uniqueness, that satisfies the following four conditions: 1) each lateral boundary of $ S $ is a $ TO $- curve of the system (*) (i.e. a semi-trajectory that approaches $ O $ as $ | t | \rightarrow + \infty $, and touches a certain direction at $ O $); 2) the outer boundary of $ S $ is a simple parametric arc (the homeomorphic image of a closed interval); 3) $ \overline{S}\; \setminus \{ 0 \} $ does not contain singular points of (*). The fourth condition is one of the following three: 4a) all trajectories of the system (*) that start in $ S $ leave this sector for both increasing and decreasing $ t $; such a sector is called a hyperbolic sector, or a saddle sector (Fig. a); 4b) all trajectories of (*) that start in $ S $ sufficiently near $ O $ do not leave $ S $ but approach $ O $ as $ t $ increases, and as $ t $ decreases they leave $ S $( or vice-versa); such a sector is called a parabolic sector or an open node sector (Fig. b); or 4c) all the trajectories of (*) that start in $ S $ sufficiently near $ O $ do not leave $ S $ as $ t $ increases or decreases but approach $ O $, forming together with $ O $ closed curves (loops), and for any two loops one encloses the other; such a sector is called an elliptic sector or a closed node sector (Fig. c).

Figure: s083770a

Figure: s083770b

Figure: s083770c

For any analytic system (*) with $ TO $- curves, a disc $ Q $ of sufficiently small radius and centre at $ O $ can always be divided into a finite number of sectors of a specific form: $ h $ hyperbolic, $ p $ parabolic and $ e $ elliptic ones (see [1] and [2]). The Frommer method can be used to exhibit all these sectors, to determine the type of each, and to establish the rules of their succession in a circuit about $ O $ along the boundary of $ Q $( and thereby to show the topological structure of the arrangement of the trajectories of (*) in a neighbourhood of $ O $). There are a priori estimates from above for $ h $, $ p $ and $ e $ in terms of the order of smallness of the norm $ \| f ( x) \| $ as $ x \rightarrow 0 $( see [1], [4], [5]).

Sometimes (see, for example, [3]) the notion of a "sector" is defined more freely: In hyperbolic and parabolic sectors loops are allowed that cover a set without limit points on the rear boundary of a sector, and in elliptic sectors, loops that do not contain one another. Here the first sentence of the previous paragraph remains valid also for a system (*) of general form, and the Poincaré index $ i $ of the singular point $ O $ of (*) is expressed by Bendixson's formula

$$ i = 1 + \frac{e - h }{2} . $$

References

[1] I. Bendixson, "Sur des courbes définiés par des équations différentielles" Acta Math. , 24 (1901) pp. 1–88
[2] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian)
[3] P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)
[4] A.N. Berlinskii, "On the structure of the neighborhood of a singular point of a two-dimensional autonomous system" Soviet Math. Dokl. , 10 : 4 (1969) pp. 882–885 Dokl. Akad. Nauk SSSR , 187 : 3 (1969) pp. 502–505
[5] M.E. Sagalovich, "Classes of local topological structures of an equilibrium state" Diff. Equations , 15 : 2 (1979) pp. 253–255 Differentsial'nye Urnveniya , 15 : 2 (1979) pp. 360–362

Comments

The lateral boundaries are sometimes called base solutions.

A Frommer sector, or Frommer normal domain, is a circular sector

$$ N = \ \{ {( r, \phi ) } : {0 < r \leq \delta ,\ | \phi - \phi _ {0} | \leq \epsilon } \} $$

with vertex at an isolated point $ O $( $ x = x _ {0} $) of the system

(see 1)) with lateral boundary $ OA $ and $ OB $, $ \phi _ {A} = \phi _ {0} - \epsilon $, $ \phi _ {B} = \phi _ {0} + \epsilon $, and with the rear boundary $ AB $ satisfying the following conditions (here $ r $ and $ \phi $ are polar coordinates in the $ x $- plane with pole at $ O $, and $ \delta , \epsilon , \phi _ {0} \in \mathbf R $):

A) $ \phi = \phi _ {0} $ is an exceptional direction of the system

at $ O $, that is, there is a sequence $ x _ {k} = x _ {0} + ( r _ {k} \cos \phi _ {k} , r _ {k} \sin \phi _ {k} ) $, $ k = 1 \dots $ $ r _ {k} \rightarrow 0 $, $ \phi _ {k} \rightarrow \phi _ {0} $ as $ k \rightarrow + \infty $, such that if $ \alpha ( x) $ is the angle between the directions of the vectors $ f ( x) $ and $ x - x _ {0} $, then $ \mathop{\rm tan} \alpha ( x _ {k} ) \rightarrow 0 $ as $ k \rightarrow + \infty $, and this direction is unique in $ N $;

B) $ \mathop{\rm tan} \alpha ( x) \neq 0 $ for any $ x \in OA \cup OB $;

C) $ \alpha ( x) \neq \pi /2 $ for any $ x \in N $.

Suppose that the angle $ \alpha ( x) $ is measured from the vector $ x - x _ {0} $ and has the sign of the reference direction. A sector $ N $ is called a Frommer normal domain of the first type (notation: $ N _ {1} $) if $ \mathop{\rm tan} \alpha ( x) < 0 $ for $ x \in OA $ and $ \mathop{\rm tan} \alpha ( x) > 0 $ for $ x \in OB $; a normal domain of the second type (notation: $ N _ {2} $) if $ \mathop{\rm tan} \alpha ( x) > 0 $ on $ OA $ and $ \mathop{\rm tan} \alpha ( x) < 0 $ on $ OB $; and a normal domain of the third type $ ( N _ {3} ) $ if $ \mathop{\rm tan} \alpha ( x) $ has one and the same sign on $ OA $ and on $ OB $. These domains were introduced by M. Frommer [1].

The trajectories of the system

in Frommer normal domains behave as follows. The domain $ N _ {1} $ is covered by $ O $- curves of the system (Fig. d). They form an open pencil (cf. Sheaf 2)), that is, a family of $ O $- curves of the same type that depends continuously on a parameter which varies over an open interval. In the domain $ N _ {2} $ there is either a) a unique $ O $- curve (Fig. e), or b) infinitely many $ O $- curves (a closed pencil; cf. Fig. f). In the domain $ N _ {3} $, either a) there are infinitely many $ O $- curves (a semi-open pencil; Fig. g) or b) there are no $ O $- curves (Fig. h).

Figure: s083770d

Figure: s083770e

Figure: s083770f

Figure: s083770g

Figure: s083770h

In a normal domain $ N $ of any type the $ O $- curves tend to $ O $ along the direction $ \phi = \phi _ {0} $ as $ t \rightarrow + \infty $( or $ t \rightarrow - \infty $), and with decreasing (increasing) $ t $ they leave the domain $ N $; all other trajectories leave $ N $ for both increasing and decreasing $ t $. The problems of distinguishing between the cases a) and b) for domains $ N _ {2} $ and $ N _ {3} $ are called, respectively, the first and second distinction problems of Frommer.

If a system

has at $ O $ a finite number $ (> 0) $ of exceptional directions, each of which can be included in a normal domain $ N $, and if for all domains $ N _ {2} $ and $ N _ {3} $ Frommer's distinction problems are solvable, then the topological structure of the arrangement of the trajectories of the system in a neighbourhood of $ O $ is completely explained, because the sectors with vertex $ O $ that are positioned between normal domains are, sufficiently close to $ O $, entirely intersected by the trajectories of the system (as in Fig. h). Such a situation holds, for example, when

$$ f ( x) = P ( x) + p ( x),\ \ P = ( P _ {1} , P _ {2} ), $$

where $ P _ {1} $ and $ P _ {2} $ are forms of degree $ n \geq 1 $ in the components $ x _ {1} , x _ {2} $ of the vector $ x $,

$$ p ( x) = o ( \| x \| ^ {n} ) \ \ \textrm{ as } \| x \| \rightarrow 0, $$

and when the following conditions are fulfilled: The form $ x _ {1} P _ {2} ( x) - x _ {2} P _ {1} ( x) $ has real linear factors, the forms $ P _ {1} $ and $ P _ {2} $ do not have common real linear factors, and $ p \in C ^ {n + 1 } $. Here situation a) holds in each of the domains $ N _ {2} $, $ N _ {3} $.

Analogues of Frommer normal domains have been introduced for systems of the form

of order $ \geq 3 $.

References

[1] M. Frommer, "Die Integralkurven einer gewöhnlichen Differentialgleichung erster Ordnung in der Umgebung rationaler Unbestimtheitsstellen" Math. Ann. , 99 (1928) pp. 222–272
[2] V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations" , Princeton Univ. Press (1960) (Translated from Russian)
[3] A.F. Andreev, "A uniqueness theorem for a normal region of Frommer's second type" Soviet Math. Dokl. , 3 : 1 (1962) pp. 132–135 Dokl. Akad. Nauk SSSR , 142 : 4 (1962) pp. 754–757
[4] A.F. Andreev, "Strengthening of the uniqueness theorem for an -curve in " Soviet Math. Dokl. , 3 : 5 (1962) pp. 1215–1216 Dokl. Akad. Nauk SSSR , 146 : 1 (1962) pp. 9–10
How to Cite This Entry:
Sector in the theory of ordinary differential equations. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sector_in_the_theory_of_ordinary_differential_equations&oldid=48642
This article was adapted from an original article by A.F. Andreev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article