Namespaces
Variants
Actions

Riesz theorem(2)

From Encyclopedia of Mathematics
Revision as of 08:11, 6 June 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Riesz's theorem on the representation of a subharmonic function: If $ u $ is a subharmonic function in a domain $ D $ of a Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $, then there exists a unique positive Borel measure $ \mu $ on $ D $ such that for any relatively compact set $ K \subset D $ the Riesz representation of $ u $ as the sum of a potential and a harmonic function $ h $ is valid:

$$ \tag{1 } u( x) = - \int\limits _ { K } E _ {n} (| x- y |) d \mu ( y) + h( x), $$

where

$$ E _ {2} (| x- y |) = \mathop{\rm ln} \frac{1}{| x- y | } ,\ \ E _ {n} (| x- y |) = \frac{1}{| x- y | ^ {n-} 2 } , $$

$ n \geq 3 $ and $ | x- y | $ is the distance between the points $ x, y \in \mathbf R ^ {n} $( see ). The measure $ \mu $ is called the associated measure for the function $ u $ or the Riesz measure.

If $ K = \overline{H}\; $ is the closure of a domain $ H $ and if, moreover, there exists a generalized Green function $ g( x, y; H) $, then formula (1) can be written in the form

$$ \tag{2 } u( x) = - \int\limits _ {\overline{H}\; } g( x, y; H) d \mu ( y) + h ^ \star ( x) , $$

where $ h ^ \star $ is the least harmonic majorant of $ u $ in $ H $.

Formulas (1) and (2) can be extended under certain additional conditions to the entire domain $ D $( see Subharmonic function, and also , ).

Riesz's theorem on the mean value of a subharmonic function: If $ u $ is a subharmonic function in a spherical shell $ \{ {x \in \mathbf R ^ {n} } : {0 \leq r \leq | x- x _ {0} | \leq R } \} $, then its mean value $ J( p) $ over the area of the sphere $ S _ {n} ( x _ {0} , \rho ) $ with centre at $ x _ {0} $ and radius $ \rho $, $ r \leq \rho \leq R $, that is,

$$ J( \rho ) = J( \rho ; x _ {0} , u) = \ \frac{1}{\sigma _ {n} ( \rho ) } \int\limits _ {S _ {n} ( x _ {0} , \rho ) } u( y) d \sigma _ {n} ( y) , $$

where $ \sigma _ {n} ( \rho ) $ is the area of $ S _ {n} ( x _ {0} , \rho ) $, is a convex function with respect to $ 1/ \rho ^ {n-} 2 $ for $ n \geq 3 $ and with respect to $ \mathop{\rm ln} \rho $ for $ n= 2 $. If $ u $ is a subharmonic function in the entire ball $ \{ {x \in \mathbf R ^ {n} } : {| x- x _ {0} | \leq R } \} $, then $ J( \rho ) $ is, furthermore, a non-decreasing continuous function with respect to $ \rho $ under the condition that $ J( 0) = u( x _ {0} ) $( see ).

Riesz's theorem on analytic functions of Hardy classes $ H ^ \delta $, $ \delta > 0 $: If $ f( z) $ is a regular analytic function in the unit disc $ D= \{ {z = re ^ {i \theta } \in \mathbf C } : {| z | < 1 } \} $ of Hardy class $ H ^ \delta $, $ \delta > 0 $( see Boundary properties of analytic functions; Hardy classes), then the following relations hold:

$$ \lim\limits _ {r \rightarrow 1 } \int\limits _ { E } | f( re ^ {i \theta } ) | ^ \delta d \theta = \ \int\limits _ { E } | f( e ^ {i \theta } ) | ^ \delta d \theta , $$

$$ \lim\limits _ {r \rightarrow 1 } \int\limits _ { 0 } ^ { {2 } \pi } | f( re ^ {i \theta } ) - f( e ^ {i \theta } ) | ^ \delta d \theta = 0, $$

where $ E $ is an arbitrary set of positive measure on the circle $ \Gamma = \{ {z = e ^ {i \theta } } : {| z | = 1 } \} $, and $ f( e ^ {i \theta } ) $ are the boundary values of $ f( z) $ on $ \Gamma $. Moreover, $ f( z) \in H ^ {1} $ if and only if its integral is continuous in the closed disc $ D \cup \Gamma $ and is absolutely continuous on $ \Gamma $( see [2]).

Theorems 1)–3) were proved by F. Riesz (see , [2]).

References

[1a] F. Riesz, "Sur les fonctions sous harmoniques et leur rapport à la theorie du potentiel I" Acta Math. , 48 (1926) pp. 329–343
[1b] F. Riesz, "Sur les fonctions sous harmoniques et leur rapport à la theorie du potentiel II" Acta Math. , 54 (1930) pp. 321–360
[2] F. Riesz, "Ueber die Randwerte einer analytischer Funktion" Math. Z. , 18 (1923) pp. 87–95
[3] I.I. Privalov, "Subharmonic functions" , Moscow-Leningrad (1937) (In Russian)
[4] I.I. [I.I. Privalov] Priwalow, "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)
[5] W.K. Hayman, P.B. Kennedy, "Subharmonic functions" , 1 , Acad. Press (1976)

Comments

In abstract potential theory, a potential on an open set $ U $ is a superharmonic function $ u \geq 0 $ on $ U $ such that any harmonic minorant of $ u $ is negative on $ U $. The Riesz representation theorem now takes the form: Any superharmonic function on $ U $ can be written uniquely as the sum of a potential and a harmonic function on $ U $, see [a2].

In an ordered Banach space $ E $, the Riesz interpolation property means that, for any $ a, b \leq d , e $, there exists a $ c \in E $ such that $ a, b \leq c \leq d, e $. An equivalent form is the decomposition property: for $ 0 \leq a \leq b+ c $ there exist $ d $ and $ e $ such that $ a = d+ e $ and $ d \leq b $, $ e \leq c $. These properties are used in the theory of Choquet simplexes (cf. Choquet simplex) and in the fine theory of hyperharmonic functions, see [a1] and [a2].

References

[a1] L. Asimow, A.J. Ellis, "Convexity theory and its applications in functional analysis" , Acad. Press (1980)
[a2] C. Constantinescu, A. Cornea, "Potential theory on harmonic spaces" , Springer (1972)
How to Cite This Entry:
Riesz theorem(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riesz_theorem(2)&oldid=48570
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article