Namespaces
Variants
Actions

Difference between revisions of "Representation of the classical groups"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing spaces)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--
 +
r0814601.png
 +
$#A+1 = 173 n = 1
 +
$#C+1 = 173 : ~/encyclopedia/old_files/data/R081/R.0801460 Representation of the classical groups
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''in tensors''
 
''in tensors''
  
Linear representations (cf. [[Linear representation|Linear representation]]) of the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r0814601.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r0814602.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r0814603.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r0814604.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r0814605.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r0814606.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r0814607.png" />-dimensional vector space over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r0814608.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r0814609.png" /> is a non-degenerate symmetric or alternating bilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146010.png" />, in invariant subspaces of tensor powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146011.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146012.png" />. If the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146013.png" /> is zero, then all irreducible polynomial linear representations of these groups can be realized by means of tensors.
+
Linear representations (cf. [[Linear representation|Linear representation]]) of the groups $  \mathop{\rm GL} ( V) $,
 +
$  \textrm{SL} ( V) $,
 +
$  \textrm{O} ( V, f  ) $,  
 +
$  \textrm{SO} ( V, f  ) $,  
 +
$  \textrm{Sp} ( V, f  ) $,  
 +
where $  V $
 +
is an $  n $-dimensional vector space over a field $  k $
 +
and $  f $
 +
is a non-degenerate symmetric or alternating bilinear form on $  V $,  
 +
in invariant subspaces of tensor powers $  T  ^ {m} ( V) $
 +
of $  V $.  
 +
If the characteristic of $  k $
 +
is zero, then all irreducible polynomial linear representations of these groups can be realized by means of tensors.
 +
 
 +
In the case  $  k = \mathbf C $
 +
the groups above are complex Lie groups. For all groups, except  $  \textrm{GL} ( V) $,
 +
all (differentiable) linear representations are polynomial; every linear representation of  $  \textrm{ GL} ( V) $
 +
has the form  $  g \mapsto (  \det  g)  ^ {k} R ( g) $,
 +
where  $  k \in \mathbf Z $
 +
and  $  R $
 +
is a polynomial linear representation. The classical compact Lie groups  $  \textrm{U} _ {n} $,
 +
$  \textrm{SU} _ {n} $,
 +
$  \textrm{O} _ {n} $,
 +
$  \textrm{SO} _ {n} $,
 +
and  $  \textrm{Sp} _ {n} $
 +
have the same complex linear representations and the same invariant subspaces in tensor spaces as their complex envelopes  $  \textrm{U} _ {n} ( \mathbf C ) $,
 +
$  \textrm{SL} _ {n} ( \mathbf C ) $,
 +
$  \textrm{O} _ {n} ( \mathbf C ) $,
 +
$  \textrm{SO} _ {n} ( \mathbf C ) $,
 +
and  $  \textrm{Sp} _ {n} ( \mathbf C ) $.
 +
Therefore, results of the theory of linear representations obtained for the classical complex Lie groups can be carried over to the corresponding compact groups and vice versa (Weyl's "unitary trick" ). In particular, using integration on a compact group one can prove that linear representations of the classical complex Lie groups are completely reducible.
 +
 
 +
The natural linear representation of  $  \textrm{GL} ( V) $
 +
in  $  T  ^ {m} ( V) $
 +
is given by the formula
  
In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146014.png" /> the groups above are complex Lie groups. For all groups, except <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146015.png" />, all (differentiable) linear representations are polynomial; every linear representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146016.png" /> has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146019.png" /> is a polynomial linear representation. The classical compact Lie groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146023.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146024.png" /> have the same complex linear representations and the same invariant subspaces in tensor spaces as their complex envelopes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146028.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146029.png" />. Therefore, results of the theory of linear representations obtained for the classical complex Lie groups can be carried over to the corresponding compact groups and vice versa (Weyl's  "unitary trick" ). In particular, using integration on a compact group one can prove that linear representations of the classical complex Lie groups are completely reducible.
+
$$
 +
g ( v _ {1} \otimes \dots \otimes v _ {m} ) = \
 +
gv _ {1} \otimes \dots \otimes gv _ {m} ,\ \
 +
g \in \textrm{GL} ( V),\ \
 +
v _ {i} \in V.
 +
$$
  
The natural linear representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146030.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146031.png" /> is given by the formula
+
In the same space a linear representation of the symmetric group  $  S _ {m} $
 +
is defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146032.png" /></td> </tr></table>
+
$$
 +
\sigma ( v _ {1} \otimes \dots \otimes v _ {m} )  = \
 +
v _ {\sigma  ^ {-  1 }( 1) } \otimes \dots \otimes
 +
v _ {\sigma  ^ {- 1 }( m) } ,\ \
 +
\sigma \in S _ {m} ,\ \
 +
v _ {i} \in V.
 +
$$
  
In the same space a linear representation of the symmetric group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146033.png" /> is defined by
+
The operators of these two representations commute, so that a linear representation of $  \textrm{GL} ( V) \times S _ {m} $
 +
is defined in  $  T  ^ {m} ( V) $.
 +
If  $  \mathop{\rm char}  k = 0 $,
 +
the space  $  T  ^ {m} ( V) $
 +
can be decomposed into a direct sum of minimal  $  ( \textrm{GL} ( V) \times S _ {m} ) $-invariant subspaces:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146034.png" /></td> </tr></table>
+
$$
 +
T  ^ {m} ( V)  = \
 +
\sum _  \lambda  V _  \lambda  \otimes U _  \lambda  .
 +
$$
  
The operators of these two representations commute, so that a linear representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146035.png" /> is defined in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146036.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146037.png" />, the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146038.png" /> can be decomposed into a direct sum of minimal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146039.png" />-invariant subspaces:
+
The summation is over all partitions  $  \lambda $
 +
of $  m $
 +
containing at most  $  n $
 +
summands, $  U _  \lambda  $
 +
is the space of the absolutely-irreducible representation $  T _  \lambda  $
 +
of $  S _ {m} $
 +
corresponding to  $  \lambda $ (cf. [[Representation of the symmetric groups|Representation of the symmetric groups]]) and  $  V _  \lambda  $
 +
is the space of an absolutely-irreducible representation  $  R _  \lambda  $
 +
of  $ \textrm{GL} ( V) $.  
 +
A partition  $  \lambda $
 +
can be conveniently represented by a tuple  $  ( \lambda _ {1} \dots \lambda _ {n} ) $
 +
of non-negative integers satisfying  $  \lambda _ {1} \geq  \dots \geq  \lambda _ {n} $
 +
and  $  \sum _ {i} \lambda _ {i} = m $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146040.png" /></td> </tr></table>
+
The subspace  $  V _  \lambda  \otimes U _  \lambda  \subset  T  ^ {m} ( V) $
 +
splits in a sum of minimal  $ \textrm{GL} ( V) $-invariant subspaces, in each of which a representation  $  R _  \lambda  $
 +
can be realized. These subspaces can be explicitly obtained by using Young symmetrizers (cf. [[Young symmetrizer|Young symmetrizer]]) connected with  $  \lambda $.
 +
E.g. for  $  \lambda = ( m, 0 \dots 0) $ (respectively,  $  \lambda = ( 1 \dots 1, 0 \dots 0) $
 +
for  $  m \leq  n $)
 +
one has  $  \dim  U _  \lambda  = 1 $
 +
and  $  V _  \lambda  \otimes U _  \lambda  $
 +
is the minimal  $  \textrm{GL} ( V) $-invariant subspace consisting of all symmetric (respectively, skew-symmetric) tensors.
  
The summation is over all partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146041.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146042.png" /> containing at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146043.png" /> summands, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146044.png" /> is the space of the absolutely-irreducible representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146045.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146046.png" /> corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146047.png" /> (cf. [[Representation of the symmetric groups|Representation of the symmetric groups]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146048.png" /> is the space of an absolutely-irreducible representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146049.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146050.png" />. A partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146051.png" /> can be conveniently represented by a tuple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146052.png" /> of non-negative integers satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146053.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146054.png" />.
+
The representation  $  R _  \lambda  $
 +
is characterized by the following properties. Let  $  B \subset \textrm{GL} ( V) $
 +
be the subgroup of all linear operators that, in some basis  $  \{ e _ {1} \dots e _ {n} \} $
 +
of $  V $,
 +
can be written as upper-triangular matrices. Then the operators  $  R _  \lambda  ( b) $,
 +
$  b \in B $,
 +
have a unique (up to a numerical factor) common eigenvector  $  v _  \lambda  $,  
 +
which is called the highest weight vector of $  R _  \lambda  $.  
 +
The corresponding eigenvalue (the highest weight of $  R _  \lambda  $)  
 +
is equal to  $  b _ {11} ^ {\lambda _ {1} } \dots b _ {nn} ^ {\lambda _ {n} } $,
 +
where  $  b _ {ii} $
 +
is the $  i $-th diagonal element of the matrix of $  b $
 +
in the basis  $  \{ e _ {1} \dots e _ {n} \} $.  
 +
Representations  $  R _  \lambda  $
 +
corresponding to distinct partitions  $  \lambda $
 +
are inequivalent. The character of $  R _  \lambda  $
 +
can be found from Weyl's formula
  
The subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146055.png" /> splits in a sum of minimal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146056.png" />-invariant subspaces, in each of which a representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146057.png" /> can be realized. These subspaces can be explicitly obtained by using Young symmetrizers (cf. [[Young symmetrizer|Young symmetrizer]]) connected with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146058.png" />. E.g. for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146059.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146060.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146061.png" />) one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146062.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146063.png" /> is the minimal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146064.png" />-invariant subspace consisting of all symmetric (respectively, skew-symmetric) tensors.
+
$$
 +
\tr R _  \lambda  ( g) = \
  
The representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146065.png" /> is characterized by the following properties. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146066.png" /> be the subgroup of all linear operators that, in some basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146067.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146068.png" />, can be written as upper-triangular matrices. Then the operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146069.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146070.png" />, have a unique (up to a numerical factor) common eigenvector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146071.png" />, which is called the highest weight vector of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146072.png" />. The corresponding eigenvalue (the highest weight of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146073.png" />) is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146074.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146075.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146076.png" />-th diagonal element of the matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146077.png" /> in the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146078.png" />. Representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146079.png" /> corresponding to distinct partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146080.png" /> are inequivalent. The character of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146081.png" /> can be found from Weyl's formula
+
\frac{W _  \lambda  ( z _ {1} \dots z _ {n} ) }{W _ {0} ( z _ {1} \dots z _ {n} ) }
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146082.png" /></td> </tr></table>
+
where  $  z _ {1} \dots z _ {n} $
 +
are the roots of the characteristic polynomial of the operator  $  g $,
 +
$  W _  \lambda  $
 +
is the generalized [[Vandermonde determinant|Vandermonde determinant]] corresponding to  $  \lambda $ (cf. [[Frobenius formula|Frobenius formula]]) and  $  W _ {0} $
 +
is the ordinary Vandermonde determinant. The dimension of  $  R _  \lambda  $
 +
is equal to
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146083.png" /> are the roots of the characteristic polynomial of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146084.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146085.png" /> is the generalized [[Vandermonde determinant|Vandermonde determinant]] corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146086.png" /> (cf. [[Frobenius formula|Frobenius formula]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146087.png" /> is the ordinary Vandermonde determinant. The dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146088.png" /> is equal to
+
$$
 +
\dim  R _  \lambda  = \
 +
\prod _ {i < j }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146089.png" /></td> </tr></table>
+
\frac{l _ {i} - l _ {j} }{j - i }
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146090.png" />.
+
where $  l _ {i} = \lambda _ {i} + n - i $.
  
The restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146091.png" /> to the [[Unimodular group|unimodular group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146092.png" /> is irreducible. The restrictions to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146093.png" /> of two representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146094.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146095.png" /> are equivalent if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146096.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146097.png" /> is independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146098.png" />). The restriction of a representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146099.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460100.png" /> to the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460101.png" /> can be found by the rule:
+
The restriction of $  R _  \lambda  $
 +
to the [[Unimodular group|unimodular group]] $ \textrm{SL} ( V) $
 +
is irreducible. The restrictions to $ \textrm{SL} ( V) $
 +
of two representations $  R _  \lambda  $
 +
and $  R _  \mu  $
 +
are equivalent if and only if $  \mu _ {i} = \lambda _ {i} + s $ (where $  s $
 +
is independent of $  i $).  
 +
The restriction of a representation $  R _  \lambda  $
 +
of $  \textrm{GL} _ {n} ( k) $
 +
to the subgroup $  \textrm{GL} _ {n - 1 }  ( k) $
 +
can be found by the rule:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460102.png" /></td> </tr></table>
+
$$
 +
R _  \lambda  \mid  _ { \textrm{GL}  _ {n - 1 }  ( k) }  = \
 +
\sum _  \mu  R _  \mu  ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460103.png" /> runs through all tuples <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460104.png" /> satisfying
+
where $  \mu $
 +
runs through all tuples $  ( \mu _ {1} \dots \mu _ {n - 1 }  ) $
 +
satisfying
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460105.png" /></td> </tr></table>
+
$$
 +
\lambda _ {1}  \geq  \mu _ {1}  \geq  \
 +
\lambda _ {2}  \geq  \mu _ {2}  \geq  \dots \geq  \lambda _ {n} .
 +
$$
  
For every Young diagram <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460106.png" />, corresponding to a partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460107.png" />, the tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460108.png" /> (for notations see [[Representation of the symmetric groups|Representation of the symmetric groups]]) is the result of alternating the tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460109.png" /> over the columns of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460110.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460111.png" /> is the number of the row of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460112.png" /> in which the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460113.png" /> is located. The tensors thus constructed with respect to all standard diagrams <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460114.png" /> form a basis of the minimal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460115.png" />-invariant subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460116.png" /> in which the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460117.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460118.png" /> is realized.
+
For every Young diagram $  d $,  
 +
corresponding to a partition $  \lambda $,  
 +
the tensor $  v _  \lambda  \otimes u _ {d}  ^  \prime  \in T  ^ {m} ( V) $ (for notations see [[Representation of the symmetric groups|Representation of the symmetric groups]]) is the result of alternating the tensor $  e _ {i _ {1}  } \otimes \dots \otimes e _ {i _ {m}  } $
 +
over the columns of $  d $,  
 +
where $  i _ {k} $
 +
is the number of the row of $  d $
 +
in which the number $  k $
 +
is located. The tensors thus constructed with respect to all standard diagrams $  d $
 +
form a basis of the minimal $  S _ {m} $-invariant subspace of $  v _  \lambda  \otimes U _  \lambda  $
 +
in which the representation $  T _  \lambda  $
 +
of $  S _ {m} $
 +
is realized.
  
A linear representation of the [[Orthogonal group|orthogonal group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460119.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460120.png" /> has the following structure. There is a decomposition into a direct sum of two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460121.png" />-invariant subspaces:
+
A linear representation of the [[Orthogonal group|orthogonal group]] $  \textrm{O} ( V, f  ) $
 +
in $  T  ^ {m} ( V) $
 +
has the following structure. There is a decomposition into a direct sum of two $  ( \textrm{O} ( V, f  ) \times S _ {m} ) $-invariant subspaces:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460122.png" /></td> </tr></table>
+
$$
 +
T  ^ {m} ( V)  = T _ {0}  ^ {m} ( V) \oplus T _ {1}  ^ {m} ( V) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460123.png" /> consists of traceless tensors, i.e. tensors whose convolution with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460124.png" /> over any two indices vanishes, and
+
where $  T _ {0}  ^ {m} ( V) $
 +
consists of traceless tensors, i.e. tensors whose convolution with $  f $
 +
over any two indices vanishes, and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460125.png" /></td> </tr></table>
+
$$
 +
T _ {1}  ^ {m} ( V)  = \
 +
\sum _ {\sigma \in S _ {m} }
 +
\sigma ( T ^ {m - 2 } ( V) \otimes f ^ { - 1 } ).
 +
$$
  
The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460126.png" />, in turn, decomposes into a direct sum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460127.png" />-invariant subspaces:
+
The space $  T _ {0}  ^ {m} ( V) $,  
 +
in turn, decomposes into a direct sum of $  ( \textrm{O} ( V, f  ) \times S _ {m} ) $-invariant subspaces:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460128.png" /></td> </tr></table>
+
$$
 +
T _ {0}  ^ {m} ( V)  = \
 +
\sum _  \lambda
 +
V _  \lambda  ^ {0} \otimes U _  \lambda  ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460129.png" />. Moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460130.png" /> if and only if the sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460131.png" /> of the heights of the first two columns of the Young tableau corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460132.png" /> does not exceed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460133.png" />, and in this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460134.png" /> is the space of an absolutely-irreducible representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460135.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460136.png" />. Representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460137.png" /> corresponding to distinct partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460138.png" /> are inequivalent. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460139.png" /> satisfies the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460140.png" />, then after replacing the first column of its Young tableau by a column of height <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460141.png" /> one obtains the Young tableau of a partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460142.png" /> which also satisfies this condition. The corresponding representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460143.png" /> are related by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460144.png" /> (in particular, they have equal dimension).
+
where $  V _  \lambda  ^ {0} \subset  V _  \lambda  $.  
 +
Moreover, $  V _  \lambda  ^ {0} \neq 0 $
 +
if and only if the sum $  \lambda _ {1}  ^  \prime  + \lambda _ {2}  ^  \prime  $
 +
of the heights of the first two columns of the Young tableau corresponding to $  \lambda $
 +
does not exceed $  n $,  
 +
and in this case $  V _  \lambda  ^ {0} $
 +
is the space of an absolutely-irreducible representation $  R _  \lambda  ^ {0} $
 +
of $  \textrm{O} ( V, f  ) $.  
 +
Representations $  R _  \lambda  ^ {0} $
 +
corresponding to distinct partitions $  \lambda $
 +
are inequivalent. If $  \lambda $
 +
satisfies the condition $  \lambda _ {1}  ^  \prime  + \lambda _ {2}  ^  \prime  \leq  n $,  
 +
then after replacing the first column of its Young tableau by a column of height $  n - \lambda _ {1}  ^  \prime  $
 +
one obtains the Young tableau of a partition $  \overline \lambda $
 +
which also satisfies this condition. The corresponding representations of $  \textrm{O} ( V, f  ) $
 +
are related by $  R _ {\overline \lambda }  ^ {0} ( g) = ( \det  g) R _  \lambda  ^ {0} ( g) $ (in particular, they have equal dimension).
  
The restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460145.png" /> to the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460146.png" /> is absolutely irreducible, except in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460147.png" /> even and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460148.png" /> (i.e. the number of terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460149.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460150.png" />). In the latter case it splits over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460151.png" /> or a quadratic extension of it into a sum of two inequivalent absolutely irreducible-representations of equal dimension.
+
The restriction of $  R _  \lambda  ^ {0} $
 +
to the subgroup $  \textrm{SO} ( V, f  ) $
 +
is absolutely irreducible, except in the case $  n $
 +
even and $  \lambda = \overline \lambda $ (i.e. the number of terms of $  \lambda $
 +
is equal to $  n/2 $).  
 +
In the latter case it splits over the field $  k $
 +
or a quadratic extension of it into a sum of two inequivalent absolutely irreducible representations of equal dimension.
  
In computing the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460152.png" /> one can assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460153.png" /> (otherwise replace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460154.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460155.png" />). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460156.png" />. Then for odd <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460157.png" /> one has
+
In computing the dimension of $  R _  \lambda  ^ {0} $
 +
one can assume that $  \lambda _ {1}  ^  \prime  \leq  n/2 $ (otherwise replace $  \lambda $
 +
by $  \overline \lambda $).  
 +
Let $  l _ {i} = \lambda _ {i} + n/2 - i $.  
 +
Then for odd $  n $
 +
one has
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460158.png" /></td> </tr></table>
+
$$
 +
\dim R _  \lambda  ^ {0}  = \
 +
\prod _ {i = 1 } ^ { [  n/2]}
  
while for even <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460159.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460160.png" /> one has
+
\frac{l _ {i} }{n/2 - i }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460161.png" /></td> </tr></table>
+
\prod _ {\begin{array}{c}
 +
i, j = 1 \\
 +
i < j
 +
\end{array}
 +
} ^ { [  n/2]}
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460162.png" /> the latter formula gives half the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460163.png" />, i.e. the dimension of each of the absolutely-irreducible representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460164.png" /> corresponding to it.
+
\frac{( l _ {i} - l _ {j} ) ( l _ {i} + l _ {j} ) }{( j - i) ( n - i - j) }
 +
,
 +
$$
  
The decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460165.png" /> with respect to the [[Symplectic group|symplectic group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460166.png" /> is analogous to the decomposition with respect to the orthogonal group, with the difference that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460167.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460168.png" />. The dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460169.png" /> can in this case be found from
+
while for even  $  n $
 +
and $  \lambda \neq \overline \lambda  $
 +
one has
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460170.png" /></td> </tr></table>
+
$$
 +
\dim  R _  \lambda  ^ {0}  = \
 +
\prod _ {\begin{array}{c}
 +
i, j = 1 \\
 +
i < j
 +
\end{array}
 +
} ^ { n/2 }
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460171.png" />.
+
\frac{( l _ {i} - l _ {j} ) ( l _ {i} + l _ {j} ) }{( j - i) ( n - i - j) }
 +
.
 +
$$
  
====References====
+
For  $  \lambda = \overline \lambda  $
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Weyl,   "The classical groups, their invariants and representations" , Princeton Univ. Press (1946)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.P. Zhelobenko"Compact Lie groups and their representations" , Amer. Math. Soc(1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Hamermesh,  "Group theory and its application to physical problems" , Addison-Wesley  (1962)</TD></TR></table>
+
the latter formula gives half the dimension of  $  R _ \lambda   ^ {0} $,  
 +
i.e. the dimension of each of the absolutely-irreducible representations of  $  \textrm{SO} ( V, f  ) $
 +
corresponding to it.
 +
 
 +
The decomposition of $  T  ^ {m} ( V) $
 +
with respect to the [[Symplectic group|symplectic group]$  \textrm{Sp} ( V, f  ) $
 +
is analogous to the decomposition with respect to the orthogonal group, with the difference that  $  V _  \lambda   ^ {0} \neq 0 $
 +
if and only if  $  \lambda _ {1}  ^  \prime  \leq  n/2 $.  
 +
The dimension of  $ R _ \lambda  ^ {0} $
 +
can in this case be found from
 +
 
 +
$$
 +
\dim  R _  \lambda  ^ {0}  = \
 +
\prod _ {i = 1 } ^ { n/2 }
 +
 
 +
\frac{l _ {i} }{n/2 - i + 1 }
 +
 
 +
\prod _ {\begin{array}{c}
 +
i, j = 1 \\
 +
i < j
 +
\end{array}
 +
} ^ { n/2 }
 +
 
 +
\frac{( l _ {i} - l _ {j} ) ( l _ {i} + l _ {j} ) }{( j - i) ( n - j - i + 2) }
 +
,
 +
$$
  
 +
where  $  l _ {i} = \lambda _ {i} - i + 1 + n/2 $.
  
 +
====References====
 +
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Weyl, "The classical groups, their invariants and representations" , Princeton Univ. Press (1946) {{MR|0000255}} {{ZBL|1024.20502}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian) {{MR|0473097}} {{MR|0473098}} {{ZBL|0228.22013}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Hamermesh, "Group theory and its application to physical problems" , Addison-Wesley (1962) {{MR|0136667}} {{ZBL|0100.36704}} </TD></TR></table>
  
 
====Comments====
 
====Comments====
This article describes the classical theory. The contemporary period in this old field of algebra begun with [[#References|[a1]]]. It can be described by two words: "characteristic-free representation theorycharacteristic free" . A different approach to the polynomial representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460172.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460173.png" /> was undertaken in [[#References|[a2]]]. Further, both classical and characteristic free theories can be found in [[#References|[a3]]].
+
This article describes the classical theory. The contemporary period in this old field of algebra began with [[#References|[a1]]]. It can be described by two words: "characteristic-free representation theory" . A different approach to the polynomial representations of $ \textrm{GL} ( V) $
 +
and $  \textrm{SL} ( V) $
 +
was undertaken in [[#References|[a2]]]. Further, both classical and characteristic free theories can be found in [[#References|[a3]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.W. Carter,   G. Lustig,   "On the modular representations of the general linear and symmetric groups" ''Math. Z.'' , '''136''' (1974) pp. 193–242</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.A. Green,   "Polynomial representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460174.png" />" , ''Lect. notes in math.'' , '''830''' , Springer (1980)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. James,   A. Kerber,   "The representation theory of the symmetric group" , Addison-Wesley (1981)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> W. Feit,   "The representation theory of finite groups" , North-Holland (1982)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.W. Carter, G. Lustig, "On the modular representations of the general linear and symmetric groups" ''Math. Z.'' , '''136''' (1974) pp. 193–242 {{MR|0369503}} {{MR|0354887}} {{ZBL|0301.20005}} {{ZBL|0298.20009}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.A. Green, "Polynomial representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460174.png" />" , ''Lect. notes in math.'' , '''830''' , Springer (1980) {{MR|0606556}} {{ZBL|0451.20037}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. James, A. Kerber, "The representation theory of the symmetric group" , Addison-Wesley (1981) {{MR|0644144}} {{ZBL|0491.20010}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> W. Feit, "The representation theory of finite groups" , North-Holland (1982) {{MR|0661045}} {{ZBL|0493.20007}} </TD></TR></table>

Latest revision as of 08:00, 5 May 2022


in tensors

Linear representations (cf. Linear representation) of the groups $ \mathop{\rm GL} ( V) $, $ \textrm{SL} ( V) $, $ \textrm{O} ( V, f ) $, $ \textrm{SO} ( V, f ) $, $ \textrm{Sp} ( V, f ) $, where $ V $ is an $ n $-dimensional vector space over a field $ k $ and $ f $ is a non-degenerate symmetric or alternating bilinear form on $ V $, in invariant subspaces of tensor powers $ T ^ {m} ( V) $ of $ V $. If the characteristic of $ k $ is zero, then all irreducible polynomial linear representations of these groups can be realized by means of tensors.

In the case $ k = \mathbf C $ the groups above are complex Lie groups. For all groups, except $ \textrm{GL} ( V) $, all (differentiable) linear representations are polynomial; every linear representation of $ \textrm{ GL} ( V) $ has the form $ g \mapsto ( \det g) ^ {k} R ( g) $, where $ k \in \mathbf Z $ and $ R $ is a polynomial linear representation. The classical compact Lie groups $ \textrm{U} _ {n} $, $ \textrm{SU} _ {n} $, $ \textrm{O} _ {n} $, $ \textrm{SO} _ {n} $, and $ \textrm{Sp} _ {n} $ have the same complex linear representations and the same invariant subspaces in tensor spaces as their complex envelopes $ \textrm{U} _ {n} ( \mathbf C ) $, $ \textrm{SL} _ {n} ( \mathbf C ) $, $ \textrm{O} _ {n} ( \mathbf C ) $, $ \textrm{SO} _ {n} ( \mathbf C ) $, and $ \textrm{Sp} _ {n} ( \mathbf C ) $. Therefore, results of the theory of linear representations obtained for the classical complex Lie groups can be carried over to the corresponding compact groups and vice versa (Weyl's "unitary trick" ). In particular, using integration on a compact group one can prove that linear representations of the classical complex Lie groups are completely reducible.

The natural linear representation of $ \textrm{GL} ( V) $ in $ T ^ {m} ( V) $ is given by the formula

$$ g ( v _ {1} \otimes \dots \otimes v _ {m} ) = \ gv _ {1} \otimes \dots \otimes gv _ {m} ,\ \ g \in \textrm{GL} ( V),\ \ v _ {i} \in V. $$

In the same space a linear representation of the symmetric group $ S _ {m} $ is defined by

$$ \sigma ( v _ {1} \otimes \dots \otimes v _ {m} ) = \ v _ {\sigma ^ {- 1 }( 1) } \otimes \dots \otimes v _ {\sigma ^ {- 1 }( m) } ,\ \ \sigma \in S _ {m} ,\ \ v _ {i} \in V. $$

The operators of these two representations commute, so that a linear representation of $ \textrm{GL} ( V) \times S _ {m} $ is defined in $ T ^ {m} ( V) $. If $ \mathop{\rm char} k = 0 $, the space $ T ^ {m} ( V) $ can be decomposed into a direct sum of minimal $ ( \textrm{GL} ( V) \times S _ {m} ) $-invariant subspaces:

$$ T ^ {m} ( V) = \ \sum _ \lambda V _ \lambda \otimes U _ \lambda . $$

The summation is over all partitions $ \lambda $ of $ m $ containing at most $ n $ summands, $ U _ \lambda $ is the space of the absolutely-irreducible representation $ T _ \lambda $ of $ S _ {m} $ corresponding to $ \lambda $ (cf. Representation of the symmetric groups) and $ V _ \lambda $ is the space of an absolutely-irreducible representation $ R _ \lambda $ of $ \textrm{GL} ( V) $. A partition $ \lambda $ can be conveniently represented by a tuple $ ( \lambda _ {1} \dots \lambda _ {n} ) $ of non-negative integers satisfying $ \lambda _ {1} \geq \dots \geq \lambda _ {n} $ and $ \sum _ {i} \lambda _ {i} = m $.

The subspace $ V _ \lambda \otimes U _ \lambda \subset T ^ {m} ( V) $ splits in a sum of minimal $ \textrm{GL} ( V) $-invariant subspaces, in each of which a representation $ R _ \lambda $ can be realized. These subspaces can be explicitly obtained by using Young symmetrizers (cf. Young symmetrizer) connected with $ \lambda $. E.g. for $ \lambda = ( m, 0 \dots 0) $ (respectively, $ \lambda = ( 1 \dots 1, 0 \dots 0) $ for $ m \leq n $) one has $ \dim U _ \lambda = 1 $ and $ V _ \lambda \otimes U _ \lambda $ is the minimal $ \textrm{GL} ( V) $-invariant subspace consisting of all symmetric (respectively, skew-symmetric) tensors.

The representation $ R _ \lambda $ is characterized by the following properties. Let $ B \subset \textrm{GL} ( V) $ be the subgroup of all linear operators that, in some basis $ \{ e _ {1} \dots e _ {n} \} $ of $ V $, can be written as upper-triangular matrices. Then the operators $ R _ \lambda ( b) $, $ b \in B $, have a unique (up to a numerical factor) common eigenvector $ v _ \lambda $, which is called the highest weight vector of $ R _ \lambda $. The corresponding eigenvalue (the highest weight of $ R _ \lambda $) is equal to $ b _ {11} ^ {\lambda _ {1} } \dots b _ {nn} ^ {\lambda _ {n} } $, where $ b _ {ii} $ is the $ i $-th diagonal element of the matrix of $ b $ in the basis $ \{ e _ {1} \dots e _ {n} \} $. Representations $ R _ \lambda $ corresponding to distinct partitions $ \lambda $ are inequivalent. The character of $ R _ \lambda $ can be found from Weyl's formula

$$ \tr R _ \lambda ( g) = \ \frac{W _ \lambda ( z _ {1} \dots z _ {n} ) }{W _ {0} ( z _ {1} \dots z _ {n} ) } , $$

where $ z _ {1} \dots z _ {n} $ are the roots of the characteristic polynomial of the operator $ g $, $ W _ \lambda $ is the generalized Vandermonde determinant corresponding to $ \lambda $ (cf. Frobenius formula) and $ W _ {0} $ is the ordinary Vandermonde determinant. The dimension of $ R _ \lambda $ is equal to

$$ \dim R _ \lambda = \ \prod _ {i < j } \frac{l _ {i} - l _ {j} }{j - i } , $$

where $ l _ {i} = \lambda _ {i} + n - i $.

The restriction of $ R _ \lambda $ to the unimodular group $ \textrm{SL} ( V) $ is irreducible. The restrictions to $ \textrm{SL} ( V) $ of two representations $ R _ \lambda $ and $ R _ \mu $ are equivalent if and only if $ \mu _ {i} = \lambda _ {i} + s $ (where $ s $ is independent of $ i $). The restriction of a representation $ R _ \lambda $ of $ \textrm{GL} _ {n} ( k) $ to the subgroup $ \textrm{GL} _ {n - 1 } ( k) $ can be found by the rule:

$$ R _ \lambda \mid _ { \textrm{GL} _ {n - 1 } ( k) } = \ \sum _ \mu R _ \mu , $$

where $ \mu $ runs through all tuples $ ( \mu _ {1} \dots \mu _ {n - 1 } ) $ satisfying

$$ \lambda _ {1} \geq \mu _ {1} \geq \ \lambda _ {2} \geq \mu _ {2} \geq \dots \geq \lambda _ {n} . $$

For every Young diagram $ d $, corresponding to a partition $ \lambda $, the tensor $ v _ \lambda \otimes u _ {d} ^ \prime \in T ^ {m} ( V) $ (for notations see Representation of the symmetric groups) is the result of alternating the tensor $ e _ {i _ {1} } \otimes \dots \otimes e _ {i _ {m} } $ over the columns of $ d $, where $ i _ {k} $ is the number of the row of $ d $ in which the number $ k $ is located. The tensors thus constructed with respect to all standard diagrams $ d $ form a basis of the minimal $ S _ {m} $-invariant subspace of $ v _ \lambda \otimes U _ \lambda $ in which the representation $ T _ \lambda $ of $ S _ {m} $ is realized.

A linear representation of the orthogonal group $ \textrm{O} ( V, f ) $ in $ T ^ {m} ( V) $ has the following structure. There is a decomposition into a direct sum of two $ ( \textrm{O} ( V, f ) \times S _ {m} ) $-invariant subspaces:

$$ T ^ {m} ( V) = T _ {0} ^ {m} ( V) \oplus T _ {1} ^ {m} ( V) , $$

where $ T _ {0} ^ {m} ( V) $ consists of traceless tensors, i.e. tensors whose convolution with $ f $ over any two indices vanishes, and

$$ T _ {1} ^ {m} ( V) = \ \sum _ {\sigma \in S _ {m} } \sigma ( T ^ {m - 2 } ( V) \otimes f ^ { - 1 } ). $$

The space $ T _ {0} ^ {m} ( V) $, in turn, decomposes into a direct sum of $ ( \textrm{O} ( V, f ) \times S _ {m} ) $-invariant subspaces:

$$ T _ {0} ^ {m} ( V) = \ \sum _ \lambda V _ \lambda ^ {0} \otimes U _ \lambda , $$

where $ V _ \lambda ^ {0} \subset V _ \lambda $. Moreover, $ V _ \lambda ^ {0} \neq 0 $ if and only if the sum $ \lambda _ {1} ^ \prime + \lambda _ {2} ^ \prime $ of the heights of the first two columns of the Young tableau corresponding to $ \lambda $ does not exceed $ n $, and in this case $ V _ \lambda ^ {0} $ is the space of an absolutely-irreducible representation $ R _ \lambda ^ {0} $ of $ \textrm{O} ( V, f ) $. Representations $ R _ \lambda ^ {0} $ corresponding to distinct partitions $ \lambda $ are inequivalent. If $ \lambda $ satisfies the condition $ \lambda _ {1} ^ \prime + \lambda _ {2} ^ \prime \leq n $, then after replacing the first column of its Young tableau by a column of height $ n - \lambda _ {1} ^ \prime $ one obtains the Young tableau of a partition $ \overline \lambda $ which also satisfies this condition. The corresponding representations of $ \textrm{O} ( V, f ) $ are related by $ R _ {\overline \lambda } ^ {0} ( g) = ( \det g) R _ \lambda ^ {0} ( g) $ (in particular, they have equal dimension).

The restriction of $ R _ \lambda ^ {0} $ to the subgroup $ \textrm{SO} ( V, f ) $ is absolutely irreducible, except in the case $ n $ even and $ \lambda = \overline \lambda $ (i.e. the number of terms of $ \lambda $ is equal to $ n/2 $). In the latter case it splits over the field $ k $ or a quadratic extension of it into a sum of two inequivalent absolutely irreducible representations of equal dimension.

In computing the dimension of $ R _ \lambda ^ {0} $ one can assume that $ \lambda _ {1} ^ \prime \leq n/2 $ (otherwise replace $ \lambda $ by $ \overline \lambda $). Let $ l _ {i} = \lambda _ {i} + n/2 - i $. Then for odd $ n $ one has

$$ \dim R _ \lambda ^ {0} = \ \prod _ {i = 1 } ^ { [ n/2]} \frac{l _ {i} }{n/2 - i } \prod _ {\begin{array}{c} i, j = 1 \\ i < j \end{array} } ^ { [ n/2]} \frac{( l _ {i} - l _ {j} ) ( l _ {i} + l _ {j} ) }{( j - i) ( n - i - j) } , $$

while for even $ n $ and $ \lambda \neq \overline \lambda $ one has

$$ \dim R _ \lambda ^ {0} = \ \prod _ {\begin{array}{c} i, j = 1 \\ i < j \end{array} } ^ { n/2 } \frac{( l _ {i} - l _ {j} ) ( l _ {i} + l _ {j} ) }{( j - i) ( n - i - j) } . $$

For $ \lambda = \overline \lambda $ the latter formula gives half the dimension of $ R _ \lambda ^ {0} $, i.e. the dimension of each of the absolutely-irreducible representations of $ \textrm{SO} ( V, f ) $ corresponding to it.

The decomposition of $ T ^ {m} ( V) $ with respect to the symplectic group $ \textrm{Sp} ( V, f ) $ is analogous to the decomposition with respect to the orthogonal group, with the difference that $ V _ \lambda ^ {0} \neq 0 $ if and only if $ \lambda _ {1} ^ \prime \leq n/2 $. The dimension of $ R _ \lambda ^ {0} $ can in this case be found from

$$ \dim R _ \lambda ^ {0} = \ \prod _ {i = 1 } ^ { n/2 } \frac{l _ {i} }{n/2 - i + 1 } \prod _ {\begin{array}{c} i, j = 1 \\ i < j \end{array} } ^ { n/2 } \frac{( l _ {i} - l _ {j} ) ( l _ {i} + l _ {j} ) }{( j - i) ( n - j - i + 2) } , $$

where $ l _ {i} = \lambda _ {i} - i + 1 + n/2 $.

References

[1] H. Weyl, "The classical groups, their invariants and representations" , Princeton Univ. Press (1946) MR0000255 Zbl 1024.20502
[2] D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian) MR0473097 MR0473098 Zbl 0228.22013
[3] M. Hamermesh, "Group theory and its application to physical problems" , Addison-Wesley (1962) MR0136667 Zbl 0100.36704

Comments

This article describes the classical theory. The contemporary period in this old field of algebra began with [a1]. It can be described by two words: "characteristic-free representation theory" . A different approach to the polynomial representations of $ \textrm{GL} ( V) $ and $ \textrm{SL} ( V) $ was undertaken in [a2]. Further, both classical and characteristic free theories can be found in [a3].

References

[a1] R.W. Carter, G. Lustig, "On the modular representations of the general linear and symmetric groups" Math. Z. , 136 (1974) pp. 193–242 MR0369503 MR0354887 Zbl 0301.20005 Zbl 0298.20009
[a2] J.A. Green, "Polynomial representations of " , Lect. notes in math. , 830 , Springer (1980) MR0606556 Zbl 0451.20037
[a3] G. James, A. Kerber, "The representation theory of the symmetric group" , Addison-Wesley (1981) MR0644144 Zbl 0491.20010
[a4] W. Feit, "The representation theory of finite groups" , North-Holland (1982) MR0661045 Zbl 0493.20007
How to Cite This Entry:
Representation of the classical groups. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Representation_of_the_classical_groups&oldid=16780
This article was adapted from an original article by E.B. Vinberg (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article