Namespaces
Variants
Actions

Difference between revisions of "Rank of a Lie algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The minimal multiplicity of the eigen value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r0774501.png" /> for the linear operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r0774502.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r0774503.png" /> runs through the whole of the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r0774504.png" />. It is assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r0774505.png" /> is a finite-dimensional algebra. An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r0774506.png" /> for which the multiplicity is minimal is called regular. The set of regular elements of a Lie algebra is open (in the [[Zariski topology|Zariski topology]]). The rank of a Lie algebra is equal to the dimension of any [[Cartan subalgebra|Cartan subalgebra]] of it. The rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r0774507.png" /> of a non-zero Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r0774508.png" /> satisfies the inequalities
+
<!--
 +
r0774501.png
 +
$#A+1 = 34 n = 0
 +
$#C+1 = 34 : ~/encyclopedia/old_files/data/R077/R.0707450 Rank of a Lie algebra
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r0774509.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
and equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745010.png" /> holds if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745011.png" /> is nilpotent (cf. [[Lie algebra, nilpotent|Lie algebra, nilpotent]]). For a semi-simple Lie algebra (cf. [[Lie algebra, semi-simple|Lie algebra, semi-simple]]) over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745012.png" /> the rank coincides with the transcendence degree over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745013.png" /> of the subfield of the field of rational functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745014.png" /> generated by all coefficients of the characteristic polynomials of the endomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745015.png" />.
+
The minimal multiplicity of the eigen value  $  \lambda = 0 $
 +
for the linear operators  $  \mathop{\rm ad} _ {L}  x $,
 +
where  $  x $
 +
runs through the whole of the Lie algebra  $  L $.  
 +
It is assumed that  $  L $
 +
is a finite-dimensional algebra. An element  $  x $
 +
for which the multiplicity is minimal is called regular. The set of regular elements of a Lie algebra is open (in the [[Zariski topology|Zariski topology]]). The rank of a Lie algebra is equal to the dimension of any [[Cartan subalgebra|Cartan subalgebra]] of it. The rank $  \mathop{\rm rk}  L $
 +
of a non-zero Lie algebra  $  L $
 +
satisfies the inequalities
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745016.png" /> is the radical in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745017.png" />, then the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745018.png" /> is called the semi-simple rank of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745019.png" />.
+
$$
 +
1  \leq    \mathop{\rm rk}  L  \leq    \mathop{\rm dim}  L,
 +
$$
  
Examples. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745020.png" /> be one of the following Lie algebras: 1) the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745021.png" /> of all square matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745022.png" /> with elements from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745023.png" />; 2) the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745024.png" /> of all matrices with zero trace; 3) the algebra of all upper-triangular matrices; 4) the algebra of all diagonal matrices; or 5) the algebra of all upper-triangular matrices with zeros on the principal diagonal. For these algebras the ranks are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745029.png" />, and the semi-simple ranks are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077450/r07745034.png" />.
+
and equality  $  \mathop{\rm rk}  L =  \mathop{\rm dim}  L $
 +
holds if and only if  $  L $
 +
is nilpotent (cf. [[Lie algebra, nilpotent|Lie algebra, nilpotent]]). For a semi-simple Lie algebra (cf. [[Lie algebra, semi-simple|Lie algebra, semi-simple]]) over a field  $  k $
 +
the rank coincides with the transcendence degree over  $  k $
 +
of the subfield of the field of rational functions on  $  L $
 +
generated by all coefficients of the characteristic polynomials of the endomorphism  $  \mathop{\rm ad} _ {L}  x $.
 +
 
 +
If  $  R $
 +
is the radical in  $  L $,
 +
then the rank of  $  L / R $
 +
is called the semi-simple rank of the algebra  $  L $.
 +
 
 +
Examples. Let  $  L $
 +
be one of the following Lie algebras: 1) the algebra $  \mathfrak g \mathfrak l _ {n} $
 +
of all square matrices of order $  n $
 +
with elements from $  k $;  
 +
2) the algebra $  \mathfrak s \mathfrak l _ {n} $
 +
of all matrices with zero trace; 3) the algebra of all upper-triangular matrices; 4) the algebra of all diagonal matrices; or 5) the algebra of all upper-triangular matrices with zeros on the principal diagonal. For these algebras the ranks are $  n $,  
 +
$  n - 1 $,  
 +
$  n $,  
 +
$  n $,  
 +
$  n ( n - 1 ) / 2 $,  
 +
and the semi-simple ranks are $  n - 1 $,  
 +
$  n - 1 $,  
 +
0 $,  
 +
0 $,  
 +
0 $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Jacobson,  "Lie algebras" , Interscience  (1962)  ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.-P. Serre,  "Lie algebras and Lie groups" , Benjamin  (1965)  (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  C. Chevalley,  "Théorie des groupes de Lie" , '''3''' , Hermann  (1955)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Jacobson,  "Lie algebras" , Interscience  (1962)  ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.-P. Serre,  "Lie algebras and Lie groups" , Benjamin  (1965)  (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  C. Chevalley,  "Théorie des groupes de Lie" , '''3''' , Hermann  (1955)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.E. Humphreys,  "Introduction to Lie algebras and representation theory" , Springer  (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Bourbaki,  "Eléments de mathématique. Groupes et algèbres de Lie" , Hermann  (1975)  pp. Chapt. 7</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.E. Humphreys,  "Introduction to Lie algebras and representation theory" , Springer  (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Bourbaki,  "Eléments de mathématique. Groupes et algèbres de Lie" , Hermann  (1975)  pp. Chapt. 7</TD></TR></table>

Latest revision as of 08:09, 6 June 2020


The minimal multiplicity of the eigen value $ \lambda = 0 $ for the linear operators $ \mathop{\rm ad} _ {L} x $, where $ x $ runs through the whole of the Lie algebra $ L $. It is assumed that $ L $ is a finite-dimensional algebra. An element $ x $ for which the multiplicity is minimal is called regular. The set of regular elements of a Lie algebra is open (in the Zariski topology). The rank of a Lie algebra is equal to the dimension of any Cartan subalgebra of it. The rank $ \mathop{\rm rk} L $ of a non-zero Lie algebra $ L $ satisfies the inequalities

$$ 1 \leq \mathop{\rm rk} L \leq \mathop{\rm dim} L, $$

and equality $ \mathop{\rm rk} L = \mathop{\rm dim} L $ holds if and only if $ L $ is nilpotent (cf. Lie algebra, nilpotent). For a semi-simple Lie algebra (cf. Lie algebra, semi-simple) over a field $ k $ the rank coincides with the transcendence degree over $ k $ of the subfield of the field of rational functions on $ L $ generated by all coefficients of the characteristic polynomials of the endomorphism $ \mathop{\rm ad} _ {L} x $.

If $ R $ is the radical in $ L $, then the rank of $ L / R $ is called the semi-simple rank of the algebra $ L $.

Examples. Let $ L $ be one of the following Lie algebras: 1) the algebra $ \mathfrak g \mathfrak l _ {n} $ of all square matrices of order $ n $ with elements from $ k $; 2) the algebra $ \mathfrak s \mathfrak l _ {n} $ of all matrices with zero trace; 3) the algebra of all upper-triangular matrices; 4) the algebra of all diagonal matrices; or 5) the algebra of all upper-triangular matrices with zeros on the principal diagonal. For these algebras the ranks are $ n $, $ n - 1 $, $ n $, $ n $, $ n ( n - 1 ) / 2 $, and the semi-simple ranks are $ n - 1 $, $ n - 1 $, $ 0 $, $ 0 $, $ 0 $.

References

[1] N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))
[2] J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French)
[3] C. Chevalley, "Théorie des groupes de Lie" , 3 , Hermann (1955)

Comments

References

[a1] J.E. Humphreys, "Introduction to Lie algebras and representation theory" , Springer (1972)
[a2] N. Bourbaki, "Eléments de mathématique. Groupes et algèbres de Lie" , Hermann (1975) pp. Chapt. 7
How to Cite This Entry:
Rank of a Lie algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rank_of_a_Lie_algebra&oldid=48432
This article was adapted from an original article by V.L. Popov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article