Namespaces
Variants
Actions

Difference between revisions of "Quaternary quadratic form"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Quadratic form|quadratic form]] in four variables. A quaternary quadratic form over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076760/q0767601.png" /> is related to the algebra of quaternions (cf. [[Quaternion|Quaternion]]) over the same field. Namely, corresponding to the algebra with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076760/q0767602.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076760/q0767603.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076760/q0767604.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076760/q0767605.png" />, is the quaternary quadratic form which is the norm of the quaternion,
+
<!--
 +
q0767601.png
 +
$#A+1 = 11 n = 0
 +
$#C+1 = 11 : ~/encyclopedia/old_files/data/Q076/Q.0706760 Quaternary quadratic form
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076760/q0767606.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076760/q0767607.png" /></td> </tr></table>
+
A [[Quadratic form|quadratic form]] in four variables. A quaternary quadratic form over a field  $  F $
 +
is related to the algebra of quaternions (cf. [[Quaternion|Quaternion]]) over the same field. Namely, corresponding to the algebra with basis  $  [ 1 , i _ {1} , i _ {2} , i _ {3} ] $,
 +
$  i _ {1}  ^ {2} = - a _ {1} \in F $,
 +
$  i _ {2}  ^ {2} = - a _ {2} \in F $,
 +
and  $  i _ {1} i _ {2} = - i _ {2} i _ {1} = i _ {3} $,
 +
is the quaternary quadratic form which is the norm of the quaternion,
  
For quaternary quadratic forms corresponding to quaternion algebras, and only for these, composition of quaternary quadratic forms is defined:
+
$$
 +
q ( x _ {0} , x _ {1} , x _ {2} , x _ {3} )  = \
 +
N ( x _ {0} + x _ {1} i _ {1} + x _ {2} i _ {2} + x _ {3} i _ {3} ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076760/q0767608.png" /></td> </tr></table>
+
$$
 +
= \
 +
x _ {0}  ^ {2} + a _ {1} x _ {1}  ^ {2} + a _ {2} x _ {2}  ^ {2} + a _ {1} a _ {2} x _ {3}  ^ {2} .
 +
$$
  
where the coordinates of the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076760/q0767609.png" /> are bilinear forms in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076760/q07676010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076760/q07676011.png" />. Composition of this kind is possible only for quadratic forms in two, four and eight variables.
+
For quaternary quadratic forms corresponding to quaternion algebras, and only for these, composition of quaternary quadratic forms is defined:
  
 +
$$
 +
q ( x) q ( y)  =  q ( z) ,
 +
$$
  
 +
where the coordinates of the vector  $  z $
 +
are bilinear forms in  $  x $
 +
and  $  y $.
 +
Composition of this kind is possible only for quadratic forms in two, four and eight variables.
  
 
====Comments====
 
====Comments====
 
The last-mentioned result is known as Hurwitz's theorem; see [[Quadratic form|Quadratic form]].
 
The last-mentioned result is known as Hurwitz's theorem; see [[Quadratic form|Quadratic form]].

Latest revision as of 08:09, 6 June 2020


A quadratic form in four variables. A quaternary quadratic form over a field $ F $ is related to the algebra of quaternions (cf. Quaternion) over the same field. Namely, corresponding to the algebra with basis $ [ 1 , i _ {1} , i _ {2} , i _ {3} ] $, $ i _ {1} ^ {2} = - a _ {1} \in F $, $ i _ {2} ^ {2} = - a _ {2} \in F $, and $ i _ {1} i _ {2} = - i _ {2} i _ {1} = i _ {3} $, is the quaternary quadratic form which is the norm of the quaternion,

$$ q ( x _ {0} , x _ {1} , x _ {2} , x _ {3} ) = \ N ( x _ {0} + x _ {1} i _ {1} + x _ {2} i _ {2} + x _ {3} i _ {3} ) = $$

$$ = \ x _ {0} ^ {2} + a _ {1} x _ {1} ^ {2} + a _ {2} x _ {2} ^ {2} + a _ {1} a _ {2} x _ {3} ^ {2} . $$

For quaternary quadratic forms corresponding to quaternion algebras, and only for these, composition of quaternary quadratic forms is defined:

$$ q ( x) q ( y) = q ( z) , $$

where the coordinates of the vector $ z $ are bilinear forms in $ x $ and $ y $. Composition of this kind is possible only for quadratic forms in two, four and eight variables.

Comments

The last-mentioned result is known as Hurwitz's theorem; see Quadratic form.

How to Cite This Entry:
Quaternary quadratic form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quaternary_quadratic_form&oldid=18432
This article was adapted from an original article by A.V. Malyshev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article