Namespaces
Variants
Actions

Difference between revisions of "Quasi-solution"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing \;)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--
 +
q0767001.png
 +
$#A+1 = 65 n = 0
 +
$#C+1 = 65 : ~/encyclopedia/old_files/data/Q076/Q.0706700 Quasi\AAhsolution
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A generalized solution of a certain ill-posed problem that (under sufficiently general conditions) satisfies, in contrast to a proper solution, the condition of being well-posed in the sense of Hadamard.
 
A generalized solution of a certain ill-posed problem that (under sufficiently general conditions) satisfies, in contrast to a proper solution, the condition of being well-posed in the sense of Hadamard.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q0767001.png" /> be metric spaces, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q0767002.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q0767003.png" /> be a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q0767004.png" />. A quasi-solution of the equation
+
Let $  X , Y $
 +
be metric spaces, let $  A : X \rightarrow Y $
 +
and let $  M $
 +
be a subset of $  X $.  
 +
A quasi-solution of the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q0767005.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
A x  = y
 +
$$
  
on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q0767006.png" /> for given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q0767007.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q0767008.png" /> is an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q0767009.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670010.png" /> that minimizes the residual <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670011.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670012.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670013.png" />. If equation (1) has a proper solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670014.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670015.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670016.png" /> is also quasi-solution.
+
on the set $  M $
 +
for given $  y $
 +
in $  Y $
 +
is an element $  \overline{x} $
 +
in $  M $
 +
that minimizes the residual $  \rho ( A x , y ) $
 +
for $  x $
 +
in $  M $.  
 +
If equation (1) has a proper solution $  x _ {0} $
 +
on $  M $,  
 +
then $  x _ {0} $
 +
is also quasi-solution.
  
The dependence of the set of quasi-solutions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670017.png" /> is conveniently represented as a superposition of two mappings:
+
The dependence of the set of quasi-solutions on $  y $
 +
is conveniently represented as a superposition of two mappings:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670018.png" /></td> </tr></table>
+
$$
 +
\overline{x}  = A  ^ {- 1} P y ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670019.png" /> is the (generally multi-valued) inverse of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670021.png" /> is the metric projection operator in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670022.png" /> onto the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670023.png" />. This superposition enables one to reduce the study of the properties of quasi-solutions to that of the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670025.png" />. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670026.png" /> is a [[Chebyshev set|Chebyshev set]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670027.png" /> is single-valued and continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670028.png" />, then the problem of finding a quasi-solution is well-posed. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670029.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670030.png" /> is many-valued, then stability of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670031.png" /> can be formulated in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670033.png" />-continuity (continuity of set-valued functions).
+
where $  A  ^ {- 1} $
 +
is the (generally multi-valued) inverse of $  A $
 +
and $  P $
 +
is the metric projection operator in $  Y $
 +
onto the set $  N = A M $.  
 +
This superposition enables one to reduce the study of the properties of quasi-solutions to that of the mappings $  A  ^ {- 1} $
 +
and $  P $.  
 +
For example, if $  N $
 +
is a [[Chebyshev set|Chebyshev set]] and $  A  ^ {- 1} $
 +
is single-valued and continuous on $  N $,  
 +
then the problem of finding a quasi-solution is well-posed. If $  P $
 +
or $  A  ^ {- 1} $
 +
is many-valued, then stability of the set $  K $
 +
can be formulated in terms of $  \beta $-continuity (continuity of set-valued functions).
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670035.png" /> are generally taken to be normed linear spaces, which enables one to obtain more complete and definitive results. Then the problem of finding quasi-solutions is well-posed if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670036.png" /> is strictly convex, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670037.png" /> is a continuous invertible linear operator and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670038.png" /> is a convex compactum. There are a number of other combinations of conditions that ensure the well-posedness of the problem of finding quasi-solutions, in which some conditions are strengthened while others are weakened (for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670039.png" /> is a closed linear operator but <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670040.png" /> is a Hilbert space).
+
$  X $
 +
and $  Y $
 +
are generally taken to be normed linear spaces, which enables one to obtain more complete and definitive results. Then the problem of finding quasi-solutions is well-posed if $  Y $
 +
is strictly convex, $  A $
 +
is a continuous invertible linear operator and $  M $
 +
is a convex compactum. There are a number of other combinations of conditions that ensure the well-posedness of the problem of finding quasi-solutions, in which some conditions are strengthened while others are weakened (for example, $  A $
 +
is a closed linear operator but $  Y $
 +
is a Hilbert space).
  
There exists a number of methods for determining sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670041.png" /> that guarantee an effective determination of quasi-solutions. One of the most widespread methods consists in the following: One considers a third space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670042.png" /> (all or some of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670043.png" /> may coincide) and a linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670044.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670045.png" /> is unbounded. One takes for the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670046.png" /> the image of a ball
+
There exists a number of methods for determining sets $  M $
 +
that guarantee an effective determination of quasi-solutions. One of the most widespread methods consists in the following: One considers a third space $  Z $ (all or some of the spaces $  X , Y , Z $
 +
may coincide) and a linear operator $  B : Z \rightarrow X $
 +
for which $  B  ^ {- 1} $
 +
is unbounded. One takes for the set $  M = M _ {r} $
 +
the image of a ball
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670047.png" /></td> </tr></table>
+
$$
 +
M _ {r}  = B S _ {r} ; \ \
 +
S _ {r}  = \{ {z \in Z } : {\| z \| \leq  r } \} .
 +
$$
  
 
In this form the problem of finding a quasi-solution is a mathematical programming problem: To minimize the functional
 
In this form the problem of finding a quasi-solution is a mathematical programming problem: To minimize the functional
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670048.png" /></td> </tr></table>
+
$$
 +
f ( z)  = \| A B z - y \|
 +
$$
  
subject to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670049.png" />. For Hilbert spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670051.png" /> one obtains a [[Quadratic programming|quadratic programming]] problem.
+
subject to $  \| z \| \leq  r $.  
 +
For Hilbert spaces $  Y $
 +
and $  Z $
 +
one obtains a [[Quadratic programming|quadratic programming]] problem.
  
In the case of well-posedness of quasi-solutions, of great importance in applications are stability estimates, in which the dependence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670052.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670053.png" /> is given. If the method for determining the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670054.png" /> is as described above, then stability of a quasi-solution is characterized by the function
+
In the case of well-posedness of quasi-solutions, of great importance in applications are stability estimates, in which the dependence of $  \| \overline{x} _ {1} - \overline{x} _ {2} \| $
 +
on $  \| y _ {1} - y _ {2} \| $
 +
is given. If the method for determining the set $  M $
 +
is as described above, then stability of a quasi-solution is characterized by the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670055.png" /></td> </tr></table>
+
$$
 +
\Omega ( \tau , r ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670056.png" /></td> </tr></table>
+
$$
 +
= \
 +
\sup \{ {\| x _ {1} - x _ {2} \| } :
 +
{x _ {i} = B z _ {i} , \| z _ {i} \| \leq  r ,
 +
\| A x _ {1} - A x _ {2} \| \leq  \tau , i = 1 , 2 } \} .
 +
$$
  
 
The following relation holds:
 
The following relation holds:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670057.png" /></td> </tr></table>
+
$$
 +
\Omega ( \tau , r )  = \omega ( \tau , 2 r ) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670058.png" /> is the solution of the extremal problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670059.png" />.
+
where $  \omega ( \tau , r ) $
 +
is the solution of the extremal problem $  \omega ( \tau , r ) = \sup \{ {\| B z \| } : {\| z \| \leq  r,  \| A B z \| \leq  \tau } \} $.
  
For Hilbert spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670060.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670061.png" /> there are expressions for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670062.png" /> in closed form.
+
For Hilbert spaces $  Z $
 +
and $  Y $
 +
there are expressions for $  \omega ( \tau , r ) $
 +
in closed form.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.K. Ivanov,  "On linear problems which are not well-posed"  ''Soviet Math. Dokl.'' , '''4''' :  3  (1962)  pp. 981–983  ''Dokl. Akad. Nauk SSSR'' , '''145''' :  2  (1962)  pp. 270–272</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.K. Ivanov,  "On ill-posed problems"  ''Mat. Sb.'' , '''61''' :  2  (1962)  pp. 211–223  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  O.A. Liskovets,  "Stability of quasi-solutions of equations with a closed operator"  ''Diff. Eq.'' , '''7''' :  9  (1971)  pp. 1300–1303  ''Differentsial. Uravn.'' , '''7''' :  9  (1971)  pp. 1707–1709</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.A. Morozov,  "Linear and nonlinear ill-posed problems"  ''J. Soviet Math.'' , '''4''' :  6  (1975)  pp. 706–755  ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''11'''  (1973)  pp. 129–178</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A.N. Tikhonov,  V.I. [V.I. Arsenin] Arsenine,  "Solution of ill-posed problems" , Wiley  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  V.I. Krylov,  V.V. Bobkov,  P.I. Monastyrnyi,  "Computing methods of higher mathematics" , '''1–2''' , Minsk  (1972–1975)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.K. Ivanov,  "On linear problems which are not well-posed"  ''Soviet Math. Dokl.'' , '''4''' :  3  (1962)  pp. 981–983  ''Dokl. Akad. Nauk SSSR'' , '''145''' :  2  (1962)  pp. 270–272</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.K. Ivanov,  "On ill-posed problems"  ''Mat. Sb.'' , '''61''' :  2  (1962)  pp. 211–223  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  O.A. Liskovets,  "Stability of quasi-solutions of equations with a closed operator"  ''Diff. Eq.'' , '''7''' :  9  (1971)  pp. 1300–1303  ''Differentsial. Uravn.'' , '''7''' :  9  (1971)  pp. 1707–1709</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.A. Morozov,  "Linear and nonlinear ill-posed problems"  ''J. Soviet Math.'' , '''4''' :  6  (1975)  pp. 706–755  ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''11'''  (1973)  pp. 129–178</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A.N. Tikhonov,  V.I. [V.I. Arsenin] Arsenine,  "Solution of ill-posed problems" , Wiley  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  V.I. Krylov,  V.V. Bobkov,  P.I. Monastyrnyi,  "Computing methods of higher mathematics" , '''1–2''' , Minsk  (1972–1975)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Frequently the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670063.png" /> is such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670064.png" /> is a differential operator. On a suitable space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670065.png" /> is then a compact operator, so that the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076700/q07670066.png" /> is a compactum.
+
Frequently the operator $  B $
 +
is such that $  B  ^ {- 1} $
 +
is a differential operator. On a suitable space, $  B $
 +
is then a compact operator, so that the set $  M $
 +
is a compactum.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B. Hofmann,  "Regularization for applied inverse and ill-posed problems" , Teubner  (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C.W. Groetsch,  "The theory of Tikhonov regularization for Fredholm equations of the first kind" , Pitman  (1984)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Baumeister,  "Stable solution of inverse problems" , Vieweg  (1987)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M.Z. Nashed (ed.) , ''Genealized inverses and applications'' , Acad. Press  (1976)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  V.A. Morozov,  "Methods for solving incorrectly posed problems" , Springer  (1984)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B. Hofmann,  "Regularization for applied inverse and ill-posed problems" , Teubner  (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C.W. Groetsch,  "The theory of Tikhonov regularization for Fredholm equations of the first kind" , Pitman  (1984)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Baumeister,  "Stable solution of inverse problems" , Vieweg  (1987)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M.Z. Nashed (ed.) , ''Genealized inverses and applications'' , Acad. Press  (1976)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  V.A. Morozov,  "Methods for solving incorrectly posed problems" , Springer  (1984)  (Translated from Russian)</TD></TR></table>

Latest revision as of 02:01, 21 January 2022


A generalized solution of a certain ill-posed problem that (under sufficiently general conditions) satisfies, in contrast to a proper solution, the condition of being well-posed in the sense of Hadamard.

Let $ X , Y $ be metric spaces, let $ A : X \rightarrow Y $ and let $ M $ be a subset of $ X $. A quasi-solution of the equation

$$ \tag{1 } A x = y $$

on the set $ M $ for given $ y $ in $ Y $ is an element $ \overline{x} $ in $ M $ that minimizes the residual $ \rho ( A x , y ) $ for $ x $ in $ M $. If equation (1) has a proper solution $ x _ {0} $ on $ M $, then $ x _ {0} $ is also quasi-solution.

The dependence of the set of quasi-solutions on $ y $ is conveniently represented as a superposition of two mappings:

$$ \overline{x} = A ^ {- 1} P y , $$

where $ A ^ {- 1} $ is the (generally multi-valued) inverse of $ A $ and $ P $ is the metric projection operator in $ Y $ onto the set $ N = A M $. This superposition enables one to reduce the study of the properties of quasi-solutions to that of the mappings $ A ^ {- 1} $ and $ P $. For example, if $ N $ is a Chebyshev set and $ A ^ {- 1} $ is single-valued and continuous on $ N $, then the problem of finding a quasi-solution is well-posed. If $ P $ or $ A ^ {- 1} $ is many-valued, then stability of the set $ K $ can be formulated in terms of $ \beta $-continuity (continuity of set-valued functions).

$ X $ and $ Y $ are generally taken to be normed linear spaces, which enables one to obtain more complete and definitive results. Then the problem of finding quasi-solutions is well-posed if $ Y $ is strictly convex, $ A $ is a continuous invertible linear operator and $ M $ is a convex compactum. There are a number of other combinations of conditions that ensure the well-posedness of the problem of finding quasi-solutions, in which some conditions are strengthened while others are weakened (for example, $ A $ is a closed linear operator but $ Y $ is a Hilbert space).

There exists a number of methods for determining sets $ M $ that guarantee an effective determination of quasi-solutions. One of the most widespread methods consists in the following: One considers a third space $ Z $ (all or some of the spaces $ X , Y , Z $ may coincide) and a linear operator $ B : Z \rightarrow X $ for which $ B ^ {- 1} $ is unbounded. One takes for the set $ M = M _ {r} $ the image of a ball

$$ M _ {r} = B S _ {r} ; \ \ S _ {r} = \{ {z \in Z } : {\| z \| \leq r } \} . $$

In this form the problem of finding a quasi-solution is a mathematical programming problem: To minimize the functional

$$ f ( z) = \| A B z - y \| $$

subject to $ \| z \| \leq r $. For Hilbert spaces $ Y $ and $ Z $ one obtains a quadratic programming problem.

In the case of well-posedness of quasi-solutions, of great importance in applications are stability estimates, in which the dependence of $ \| \overline{x} _ {1} - \overline{x} _ {2} \| $ on $ \| y _ {1} - y _ {2} \| $ is given. If the method for determining the set $ M $ is as described above, then stability of a quasi-solution is characterized by the function

$$ \Omega ( \tau , r ) = $$

$$ = \ \sup \{ {\| x _ {1} - x _ {2} \| } : {x _ {i} = B z _ {i} , \| z _ {i} \| \leq r , \| A x _ {1} - A x _ {2} \| \leq \tau , i = 1 , 2 } \} . $$

The following relation holds:

$$ \Omega ( \tau , r ) = \omega ( \tau , 2 r ) , $$

where $ \omega ( \tau , r ) $ is the solution of the extremal problem $ \omega ( \tau , r ) = \sup \{ {\| B z \| } : {\| z \| \leq r, \| A B z \| \leq \tau } \} $.

For Hilbert spaces $ Z $ and $ Y $ there are expressions for $ \omega ( \tau , r ) $ in closed form.

References

[1] V.K. Ivanov, "On linear problems which are not well-posed" Soviet Math. Dokl. , 4 : 3 (1962) pp. 981–983 Dokl. Akad. Nauk SSSR , 145 : 2 (1962) pp. 270–272
[2] V.K. Ivanov, "On ill-posed problems" Mat. Sb. , 61 : 2 (1962) pp. 211–223 (In Russian)
[3] O.A. Liskovets, "Stability of quasi-solutions of equations with a closed operator" Diff. Eq. , 7 : 9 (1971) pp. 1300–1303 Differentsial. Uravn. , 7 : 9 (1971) pp. 1707–1709
[4] V.A. Morozov, "Linear and nonlinear ill-posed problems" J. Soviet Math. , 4 : 6 (1975) pp. 706–755 Itogi Nauk. i Tekhn. Mat. Anal. , 11 (1973) pp. 129–178
[5] A.N. Tikhonov, V.I. [V.I. Arsenin] Arsenine, "Solution of ill-posed problems" , Wiley (1977) (Translated from Russian)
[6] V.I. Krylov, V.V. Bobkov, P.I. Monastyrnyi, "Computing methods of higher mathematics" , 1–2 , Minsk (1972–1975) (In Russian)

Comments

Frequently the operator $ B $ is such that $ B ^ {- 1} $ is a differential operator. On a suitable space, $ B $ is then a compact operator, so that the set $ M $ is a compactum.

References

[a1] B. Hofmann, "Regularization for applied inverse and ill-posed problems" , Teubner (1986)
[a2] C.W. Groetsch, "The theory of Tikhonov regularization for Fredholm equations of the first kind" , Pitman (1984)
[a3] J. Baumeister, "Stable solution of inverse problems" , Vieweg (1987)
[a4] M.Z. Nashed (ed.) , Genealized inverses and applications , Acad. Press (1976)
[a5] V.A. Morozov, "Methods for solving incorrectly posed problems" , Springer (1984) (Translated from Russian)
How to Cite This Entry:
Quasi-solution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-solution&oldid=15713
This article was adapted from an original article by V.K. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article