Namespaces
Variants
Actions

Difference between revisions of "Quasi-simple representation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Tex done)
 
Line 1: Line 1:
A continuous [[Linear representation|linear representation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q0766901.png" /> of a connected semi-simple real Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q0766902.png" /> in a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q0766903.png" /> such that: 1) the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q0766904.png" /> is a scalar multiple of the identity operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q0766905.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q0766906.png" /> in the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q0766907.png" />; and 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q0766908.png" /> is the space of analytic vectors (cf. [[Analytic vector|Analytic vector]]) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q0766909.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q07669010.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q07669011.png" /> is the representation of the universal enveloping Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q07669012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q07669013.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q07669014.png" /> (cf. [[Universal enveloping algebra|Universal enveloping algebra]]), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q07669015.png" /> is a scalar multiple of the identity operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q07669016.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q07669017.png" /> in the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q07669018.png" />. These scalar multiples determine a character of the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q07669019.png" />, called the infinitesimal character of the quasi-simple representation. Two quasi-simple representations are said to be infinitesimally equivalent if they determine equivalent representations in the respective vector spaces of analytic vectors of the universal enveloping algebras. Every completely-irreducible representation of a group in a Banach space is a quasi-simple representation, and any irreducible quasi-simple representation of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q07669020.png" /> in a Banach space is infinitesimally equivalent to a completely-irreducible representation; the latter is the restriction to the invariant subspace of some quotient representation of the representation (generally non-unitary) in the fundamental series of representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076690/q07669021.png" />.
+
A continuous [[linear representation]] $\pi$ of a connected semi-simple real Lie group $G$ in a Banach space $E$ such that: 1) the operator $\pi(x)$ is a scalar multiple of the identity operator on $E$ for any $x$ in the centre of $G$; and 2) if $F$ is the space of [[analytic vector]]s in $E$ with respect to $\pi$ and if $\pi_F$ is the representation of the universal enveloping Lie algebra $\mathfrak{G}$ of $G$ in $F$ (cf. [[Universal enveloping algebra]]), then $\pi_F(z)$ is a scalar multiple of the identity operator on $F$ for all $z$ in the centre of $\mathfrak{G}$. These scalar multiples determine a character of the centre of $\mathfrak{G}$, called the infinitesimal character of the quasi-simple representation. Two quasi-simple representations are said to be infinitesimally equivalent if they determine equivalent representations in the respective vector spaces of analytic vectors of the universal enveloping algebras. Every completely-irreducible representation of a group in a Banach space is a quasi-simple representation, and any irreducible quasi-simple representation of a group $G$ in a Banach space is infinitesimally equivalent to a completely-irreducible representation; the latter is the restriction to the invariant subspace of some quotient representation of the representation (generally non-unitary) in the fundamental series of representations of $G$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  Harish-Chandra,  "Representations of a semisimple Lie group on a Banach space I"  ''Trans. Amer. Math. Soc.'' , '''75'''  (1953)  pp. 185–243</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  Harish-Chandra,  "Representations of a semisimple Lie groups II"  ''Trans. Amer. Math. Soc.'' , '''76'''  (1954)  pp. 26–65</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J. Lepowsky,  "Algebraic results on representations of semisimple Lie groups"  ''Trans. Amer. Math. Soc.'' , '''176'''  (1973)  pp. 1–44</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.I. Fomin,  "Characters of irreducible representations of real semisimple Lie groups"  ''Funct. Anal. Appl.'' , '''10''' :  3  (1976)  pp. 246–247  ''Funktsional. Anal. Prilozhen.'' , '''10''' :  3  (1976)  pp. 95–96</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1a]</TD> <TD valign="top">  Harish-Chandra,  "Representations of a semisimple Lie group on a Banach space I"  ''Trans. Amer. Math. Soc.'' , '''75'''  (1953)  pp. 185–243</TD></TR>
 +
<TR><TD valign="top">[1b]</TD> <TD valign="top">  Harish-Chandra,  "Representations of a semisimple Lie groups II"  ''Trans. Amer. Math. Soc.'' , '''76'''  (1954)  pp. 26–65</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  J. Lepowsky,  "Algebraic results on representations of semisimple Lie groups"  ''Trans. Amer. Math. Soc.'' , '''176'''  (1973)  pp. 1–44</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  A.I. Fomin,  "Characters of irreducible representations of real semisimple Lie groups"  ''Funct. Anal. Appl.'' , '''10''' :  3  (1976)  pp. 246–247  ''Funktsional. Anal. Prilozhen.'' , '''10''' :  3  (1976)  pp. 95–96</TD></TR>
 +
</table>
  
  
Line 10: Line 15:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.R. Wallach,  "Real reductive groups" , Acad. Press  (1988)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  N.R. Wallach,  "Real reductive groups" , Acad. Press  (1988)</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Latest revision as of 17:00, 9 October 2016

A continuous linear representation $\pi$ of a connected semi-simple real Lie group $G$ in a Banach space $E$ such that: 1) the operator $\pi(x)$ is a scalar multiple of the identity operator on $E$ for any $x$ in the centre of $G$; and 2) if $F$ is the space of analytic vectors in $E$ with respect to $\pi$ and if $\pi_F$ is the representation of the universal enveloping Lie algebra $\mathfrak{G}$ of $G$ in $F$ (cf. Universal enveloping algebra), then $\pi_F(z)$ is a scalar multiple of the identity operator on $F$ for all $z$ in the centre of $\mathfrak{G}$. These scalar multiples determine a character of the centre of $\mathfrak{G}$, called the infinitesimal character of the quasi-simple representation. Two quasi-simple representations are said to be infinitesimally equivalent if they determine equivalent representations in the respective vector spaces of analytic vectors of the universal enveloping algebras. Every completely-irreducible representation of a group in a Banach space is a quasi-simple representation, and any irreducible quasi-simple representation of a group $G$ in a Banach space is infinitesimally equivalent to a completely-irreducible representation; the latter is the restriction to the invariant subspace of some quotient representation of the representation (generally non-unitary) in the fundamental series of representations of $G$.

References

[1a] Harish-Chandra, "Representations of a semisimple Lie group on a Banach space I" Trans. Amer. Math. Soc. , 75 (1953) pp. 185–243
[1b] Harish-Chandra, "Representations of a semisimple Lie groups II" Trans. Amer. Math. Soc. , 76 (1954) pp. 26–65
[2] J. Lepowsky, "Algebraic results on representations of semisimple Lie groups" Trans. Amer. Math. Soc. , 176 (1973) pp. 1–44
[3] A.I. Fomin, "Characters of irreducible representations of real semisimple Lie groups" Funct. Anal. Appl. , 10 : 3 (1976) pp. 246–247 Funktsional. Anal. Prilozhen. , 10 : 3 (1976) pp. 95–96


Comments

References

[a1] N.R. Wallach, "Real reductive groups" , Acad. Press (1988)
How to Cite This Entry:
Quasi-simple representation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-simple_representation&oldid=39389
This article was adapted from an original article by A.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article