Namespaces
Variants
Actions

Difference between revisions of "Projection spectrum"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A family of simplicial complexes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p0751501.png" /> (cf. [[Simplicial complex|Simplicial complex]]) indexed by a [[Directed set|directed set]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p0751502.png" /> such that for every pair of indices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p0751503.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p0751504.png" /> a simplicial mapping (projection) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p0751505.png" /> is defined from the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p0751506.png" /> onto the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p0751507.png" />. It is also required that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p0751508.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p0751509.png" /> (transitivity condition). Then it is said that a projection spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515010.png" />, or simply <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515011.png" />, is given. This concept is due to P.S. Aleksandrov (see [[#References|[2]]]); it is essentially equivalent to the general concept of an inverse system, or an inverse spectrum (see [[System (in a category)|System (in a category)]]). Indeed, every complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515012.png" /> naturally gives rise to the partially ordered set of simplices of this complex, and hence to a topological <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515013.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515014.png" />. The projections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515015.png" /> then become continuous mappings. Conversely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515016.png" /> is an inverse system of topological <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515017.png" />-spaces and continuous projections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515018.png" />, then each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515019.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515020.png" /> naturally turns into a partially ordered set, and this partially ordered set is realized in the form of the simplicial complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515021.png" />. Here the continuous projections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515022.png" /> become simplicial mappings.
+
<!--
 +
p0751501.png
 +
$#A+1 = 119 n = 0
 +
$#C+1 = 119 : ~/encyclopedia/old_files/data/P075/P.0705150 Projection spectrum
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A family of simplicial complexes  $  \{ {N _  \alpha  } : {\alpha \in A } \} $(
 +
cf. [[Simplicial complex|Simplicial complex]]) indexed by a [[Directed set|directed set]] $  ( A , > ) $
 +
such that for every pair of indices $  \alpha , \alpha  ^  \prime  \in A $
 +
for which $  \alpha  ^  \prime  > \alpha $
 +
a simplicial mapping (projection) $  \pi _  \alpha  ^ {\alpha  ^  \prime  } $
 +
is defined from the complex $  N _ {\alpha  ^  \prime  } $
 +
onto the complex $  N _  \alpha  $.  
 +
It is also required that $  \pi _  \alpha  ^ {\alpha  ^ {\prime\prime} } = \pi _  \alpha  ^ {\alpha  ^  \prime  } \pi _ {\alpha  ^  \prime  } ^ {\alpha  ^ {\prime\prime} } $
 +
when  $  \alpha  ^ {\prime\prime} > \alpha  ^  \prime  > \alpha $(
 +
transitivity condition). Then it is said that a projection spectrum $  S = \{ N _  \alpha  , \pi _  \alpha  ^ {\alpha  ^  \prime  } , A \} $,  
 +
or simply $  S = \{ N _  \alpha  , \pi _  \alpha  ^ {\alpha  ^  \prime  } \} $,  
 +
is given. This concept is due to P.S. Aleksandrov (see [[#References|[2]]]); it is essentially equivalent to the general concept of an inverse system, or an inverse spectrum (see [[System (in a category)|System (in a category)]]). Indeed, every complex $  N _  \alpha  $
 +
naturally gives rise to the partially ordered set of simplices of this complex, and hence to a topological $  T _ {0} $-
 +
space $  N _  \alpha  $.  
 +
The projections $  \pi _  \alpha  ^ {\alpha  ^  \prime  } $
 +
then become continuous mappings. Conversely, if $  \{ N _  \alpha  , \pi _  \alpha  ^ {\alpha  ^  \prime  } \} $
 +
is an inverse system of topological $  T _ {0} $-
 +
spaces and continuous projections $  \pi _  \alpha  ^ {\alpha  ^  \prime  } $,  
 +
then each $  T _ {0} $-
 +
space $  N _  \alpha  $
 +
naturally turns into a partially ordered set, and this partially ordered set is realized in the form of the simplicial complex $  N _  \alpha  $.  
 +
Here the continuous projections $  \pi _  \alpha  ^ {\alpha  ^  \prime  } $
 +
become simplicial mappings.
  
 
The concepts of a  "projection spectrum"  (and hence of an inverse system of spaces) and of a nerve of a system of sets (see below) have influenced the development of topology. After their introduction it became possible to speak about a theory of approximation of complicated topological and algebraic-topological objects by simpler ones.
 
The concepts of a  "projection spectrum"  (and hence of an inverse system of spaces) and of a nerve of a system of sets (see below) have influenced the development of topology. After their introduction it became possible to speak about a theory of approximation of complicated topological and algebraic-topological objects by simpler ones.
  
If for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515023.png" /> the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515024.png" /> is finite, then the spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515025.png" /> is called a finite projection spectrum. With each projection spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515026.png" /> the following concepts are associated. Any collection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515027.png" /> of simplices, one from every complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515028.png" /> of the spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515029.png" />, is called a thread of this spectrum if for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515030.png" /> always <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515031.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515032.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515033.png" /> of all threads with the topology whose base consists of the sets of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515034.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515036.png" /> are arbitrary and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515037.png" /> means that the simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515038.png" /> of the thread <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515039.png" /> in the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515040.png" /> is a face of the simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515041.png" />, is called the complete limit of the spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515042.png" />. The same topology will be obtained by inducing on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515043.png" /> the topology of the Tikhonov product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515044.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515045.png" /> is the topological <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515046.png" />-space corresponding to the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515047.png" />. A thread <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515048.png" /> is ambient to a thread <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515049.png" /> if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515050.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515051.png" />. A thread <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515052.png" /> is called maximal (respectively, minimal) if there is no thread different from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515053.png" /> which is ambient to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515054.png" /> (respectively, to which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515055.png" /> is ambient). The subspace of the complete limit space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515056.png" /> of the spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515057.png" /> consisting of all the maximal (minimal) threads is called the upper (lower) limit of the spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515058.png" />. The complete limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515059.png" /> is a semi-regular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515060.png" />-space, while the upper limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515061.png" /> and the lower limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515062.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515063.png" />-spaces. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515064.png" /> is a finite projection spectrum, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515066.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515067.png" /> are compact spaces.
+
If for every $  \alpha \in A $
 +
the complex $  N _  \alpha  $
 +
is finite, then the spectrum $  S = \{ N _  \alpha  , \pi _  \alpha  ^ {\alpha  ^  \prime  } \} $
 +
is called a finite projection spectrum. With each projection spectrum $  S = \{ N _  \alpha  , \pi _  \alpha  ^ {\alpha  ^  \prime  } \} $
 +
the following concepts are associated. Any collection $  \xi = \{ {t _  \alpha  } : {\alpha \in A } \} $
 +
of simplices, one from every complex $  N _  \alpha  $
 +
of the spectrum $  S $,  
 +
is called a thread of this spectrum if for $  \alpha  ^  \prime  > \alpha $
 +
always $  \pi _  \alpha  ^ {\alpha  ^  \prime  } t _ {\alpha  ^  \prime  } = t _  \alpha  $,  
 +
where $  t _  \alpha  , t _ {\alpha  ^  \prime  } \in \xi $.  
 +
The set $  \overline{S}\; $
 +
of all threads with the topology whose base consists of the sets of the form $  O t _ {\alpha _ {0}  } = \{ {\xi  ^  \prime  \in S } : {t _ {\alpha _ {0}  }  ^  \prime  \leq  t _ {\alpha _ {0}  } } \} $,  
 +
where $  \alpha _ {0} \in A $,  
 +
$  t _ {\alpha _ {0}  } \in N _ {\alpha _ {0}  } $
 +
are arbitrary and $  t _ {\alpha _ {0}  }  ^  \prime  < t _ {\alpha _ {0}  } $
 +
means that the simplex $  t _ {\alpha _ {0}  }  ^  \prime  $
 +
of the thread $  \xi  ^  \prime  $
 +
in the complex $  N _ {\alpha _ {0}  } $
 +
is a face of the simplex $  t _ {\alpha _ {0}  } $,  
 +
is called the complete limit of the spectrum $  S $.  
 +
The same topology will be obtained by inducing on $  \overline{S}\; $
 +
the topology of the Tikhonov product $  \Pi \{ { {\mathcal N} _  \alpha  } : {\alpha \in A } \} $,  
 +
where $  {\mathcal N} _  \alpha  $
 +
is the topological $  T _ {0} $-
 +
space corresponding to the complex $  N _  \alpha  $.  
 +
A thread $  \xi  ^  \prime  = \{ t _  \alpha  ^  \prime  \} $
 +
is ambient to a thread $  \xi = \{ t _  \alpha  \} $
 +
if for every $  \alpha \in A $
 +
one has $  t _  \alpha  ^  \prime  \geq  t _  \alpha  $.  
 +
A thread $  \xi $
 +
is called maximal (respectively, minimal) if there is no thread different from $  \xi $
 +
which is ambient to $  \xi $(
 +
respectively, to which $  \xi $
 +
is ambient). The subspace of the complete limit space $  \overline{S}\; $
 +
of the spectrum $  S $
 +
consisting of all the maximal (minimal) threads is called the upper (lower) limit of the spectrum $  S $.  
 +
The complete limit $  \overline{S}\; $
 +
is a semi-regular $  T _ {0} $-
 +
space, while the upper limit $  \widehat{S}  $
 +
and the lower limit $  \check{S}  $
 +
are $  T _ {1} $-
 +
spaces. If $  S $
 +
is a finite projection spectrum, then $  \overline{S}\; $,  
 +
$  \widehat{S}  $
 +
and $  \check{S}  $
 +
are compact spaces.
  
At the foundation of the entire theory of approximation of topological spaces by polyhedra, or more precisely by simplicial complexes, lies the concept, introduced by Aleksandrov (see [[#References|[1]]]), of the nerve of a system of sets. The nerve of a given system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515068.png" /> of sets is defined to be the simplicial complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515069.png" /> whose vertices are in one-to-one correspondence with the elements of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515070.png" /> and a set of vertices determines a simplex of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515071.png" /> if and only if the sets of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515072.png" /> corresponding to those vertices have non-empty intersection.
+
At the foundation of the entire theory of approximation of topological spaces by polyhedra, or more precisely by simplicial complexes, lies the concept, introduced by Aleksandrov (see [[#References|[1]]]), of the nerve of a system of sets. The nerve of a given system $  \alpha $
 +
of sets is defined to be the simplicial complex $  N _  \alpha  $
 +
whose vertices are in one-to-one correspondence with the elements of the system $  \alpha $
 +
and a set of vertices determines a simplex of the complex $  N _  \alpha  $
 +
if and only if the sets of the system $  \alpha $
 +
corresponding to those vertices have non-empty intersection.
  
It is more convenient to consider so-called canonical coverings of a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515073.png" />. A locally finite (finite) covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515074.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515075.png" /> is called canonical if its elements are (closed) canonical sets (in another terminology, regular closed sets, cf. [[Canonical set|Canonical set]]) with disjoint interiors. For two canonical coverings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515076.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515077.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515078.png" /> follows <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515079.png" />, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515080.png" /> is a refinement of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515081.png" /> (in this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515082.png" />), then the natural simplicial mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515083.png" /> (the projection) of the nerve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515084.png" /> onto the nerve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515085.png" /> is defined; it is given by assigning to each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515086.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515087.png" /> that unique element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515088.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515089.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515090.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515091.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515092.png" />) denote the collection of all locally finite (finite) canonical coverings of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515093.png" />. For every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515094.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515095.png" />), the nerve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515096.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515097.png" /> is considered. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515098.png" />, then a simplicial mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515099.png" /> is defined. The projection spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150100.png" /> thus obtained is called the complete (respectively, finite) projection spectrum of the topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150101.png" />. Aleksandrov [[#References|[2]]] proved in 1928 that every metric (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150102.png" />-dimensional) compact space is the upper limit of an (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150103.png" />-dimensional) finite projection spectrum over a countable set of indices. A.G. Kurosh proved in 1934 that every compactum is the upper limit of its finite projection spectrum. In 1961, V.I. Ponomarev proved that every paracompactum is the upper limit of its complete projection spectrum, that is, the spectrum constructed over the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150104.png" /> of all locally finite canonical coverings of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150105.png" />. Ponomarev has introduced the concept of a relaxation of a simplicial complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150106.png" />, by which he means any closed subcomplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150107.png" /> containing all vertices of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150108.png" />. The zero-dimensional complex consisting of all vertices of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150109.png" /> is called its total relaxation (or skeleton). By replacing all the complexes of a given projection spectrum by their (total) relaxations while preserving the projections, one obtains the (total) relaxation of the spectrum. The investigation of irreducible perfect mappings of paracompacta reduces to the study of the relaxations of their complete projection spectra. Here the limit of the total relaxation of the complete projection spectrum of a paracompactum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150110.png" /> is the so-called [[Absolute|absolute]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150111.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150112.png" />, and the limit of the total relaxation of the finite projection spectrum of any regular space is the Stone—Čech compactification <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150113.png" /> of the absolute <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150114.png" /> of that regular space. Every finite abstract projection spectrum is equivalent to the spectrum over a directed refining set of finite canonical coverings of some semi-regular compact <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150115.png" />-space, that is, it is obtained from this spectrum by means of finitely many of the following operations: 1) replacement of a spectrum by an isomorphic spectrum; 2) replacement of a spectrum by a cofinal part of it; 3) replacement of a spectrum by a spectrum containing the given one as a cofinal part (Zaitsev's theorem).
+
It is more convenient to consider so-called canonical coverings of a space $  X $.  
 +
A locally finite (finite) covering $  \alpha $
 +
of the space $  X $
 +
is called canonical if its elements are (closed) canonical sets (in another terminology, regular closed sets, cf. [[Canonical set|Canonical set]]) with disjoint interiors. For two canonical coverings $  \alpha  ^  \prime  , \alpha $
 +
of the space $  X $,  
 +
if $  \alpha  ^  \prime  $
 +
follows $  \alpha $,  
 +
i.e. if $  \alpha  ^  \prime  $
 +
is a refinement of $  \alpha $(
 +
in this case $  \alpha  ^  \prime  > \alpha $),  
 +
then the natural simplicial mapping $  \pi _  \alpha  ^ {\alpha  ^  \prime  } $(
 +
the projection) of the nerve $  N _ {\alpha  ^  \prime  } $
 +
onto the nerve $  N _  \alpha  $
 +
is defined; it is given by assigning to each element $  A ^ {\alpha  ^  \prime  } $
 +
of $  \alpha  ^  \prime  $
 +
that unique element $  A  ^  \alpha  $
 +
of $  \alpha $
 +
for which $  A  ^  \alpha  \supset A ^ {\alpha  ^  \prime  } $.  
 +
Let $  \mathfrak A ( X) $(
 +
respectively, $  \mathfrak A _ {0} ( X) $)  
 +
denote the collection of all locally finite (finite) canonical coverings of the space $  X $.  
 +
For every $  \alpha \in \mathfrak A ( X) $(
 +
respectively, $  \alpha \in \mathfrak A _ {0} ( X) $),  
 +
the nerve $  N _  \alpha  $
 +
of $  \alpha $
 +
is considered. If $  \alpha  ^  \prime  > \alpha $,  
 +
then a simplicial mapping $  \pi _  \alpha  ^ {\alpha  ^  \prime  } : N _ {\alpha  ^  \prime  } \rightarrow N _  \alpha  $
 +
is defined. The projection spectrum $  S = \{ N _  \alpha  , \pi _  \alpha  ^ {\alpha  ^  \prime  } \} $
 +
thus obtained is called the complete (respectively, finite) projection spectrum of the topological space $  X $.  
 +
Aleksandrov [[#References|[2]]] proved in 1928 that every metric ( $  n $-
 +
dimensional) compact space is the upper limit of an ( $  n $-
 +
dimensional) finite projection spectrum over a countable set of indices. A.G. Kurosh proved in 1934 that every compactum is the upper limit of its finite projection spectrum. In 1961, V.I. Ponomarev proved that every paracompactum is the upper limit of its complete projection spectrum, that is, the spectrum constructed over the set $  \mathfrak A ( X) $
 +
of all locally finite canonical coverings of the space $  X $.  
 +
Ponomarev has introduced the concept of a relaxation of a simplicial complex $  K $,  
 +
by which he means any closed subcomplex $  K  ^  \prime  \subset  K $
 +
containing all vertices of the complex $  K $.  
 +
The zero-dimensional complex consisting of all vertices of the complex $  K $
 +
is called its total relaxation (or skeleton). By replacing all the complexes of a given projection spectrum by their (total) relaxations while preserving the projections, one obtains the (total) relaxation of the spectrum. The investigation of irreducible perfect mappings of paracompacta reduces to the study of the relaxations of their complete projection spectra. Here the limit of the total relaxation of the complete projection spectrum of a paracompactum $  X $
 +
is the so-called [[Absolute|absolute]] $  \dot{X} $
 +
of $  X $,  
 +
and the limit of the total relaxation of the finite projection spectrum of any regular space is the Stone—Čech compactification $  \beta \dot{X} $
 +
of the absolute $  \dot{X} $
 +
of that regular space. Every finite abstract projection spectrum is equivalent to the spectrum over a directed refining set of finite canonical coverings of some semi-regular compact $  T _ {0} $-
 +
space, that is, it is obtained from this spectrum by means of finitely many of the following operations: 1) replacement of a spectrum by an isomorphic spectrum; 2) replacement of a spectrum by a cofinal part of it; 3) replacement of a spectrum by a spectrum containing the given one as a cofinal part (Zaitsev's theorem).
  
 
The concepts of a nerve and a projection spectrum provided the means for reducing the properties of general spaces, first of all, paracompacta, compacta and metric compacta, to the properties of complexes and their simplicial mappings. This made it possible to define and to study homology and cohomology invariants not only of polyhedra but of general spaces (see [[Aleksandrov–Čech homology and cohomology|Aleksandrov–Čech homology and cohomology]]; [[Spectral homology|Spectral homology]]). All this has led to the synthesis of geometric and set-theoretic ideas in topology.
 
The concepts of a nerve and a projection spectrum provided the means for reducing the properties of general spaces, first of all, paracompacta, compacta and metric compacta, to the properties of complexes and their simplicial mappings. This made it possible to define and to study homology and cohomology invariants not only of polyhedra but of general spaces (see [[Aleksandrov–Čech homology and cohomology|Aleksandrov–Čech homology and cohomology]]; [[Spectral homology|Spectral homology]]). All this has led to the synthesis of geometric and set-theoretic ideas in topology.
Line 13: Line 140:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  "Une définition des nombres de Betti pour un ensemble fermé quelconque"  ''C.R. Acad. Sci. Paris'' , '''184'''  (1927)  pp. 317–319</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.S. Aleksandrov,  "Untersuchungen über Gestalt und Lage abgeschlossener Mengen beliebiger Dimension"  ''Ann. of Math.'' , '''30'''  (1929)  pp. 101–187</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  P.S. Aleksandrov,  "On the concept of space in topology"  ''Uspekhi Mat. Nauk'' , '''2''' :  1  (1947)  pp. 5–57  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  P.S. Aleksandrov,  "Einführung in die Mengenlehre und die allgemeine Topologie" , Deutsch. Verlag Wissenschaft.  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  P.S. Aleksandrov,  V.I. Ponomarev,  "Projection spectra"  J. Novák (ed.) , ''General topology and its relations to modern analysis and algebra'' , '''2''' , Czechoslovak. Acad. Sci.  (1967)  pp. 25–30  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  P.S. Aleksandrov,  V.V. Fedorchuk,  "The main aspects in the development of set-theoretical topology"  ''Russian Math. Surveys'' , '''33''' :  3  (1978)  pp. 1–53  ''Uspekhi Mat. Nauk'' , '''33''' :  3  (1978)  pp. 3–48</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  V.I. Ponomarev,  "Projective spectra and continuous mappings of paracompacta"  ''Transl. Amer. Math. Soc. (2)'' , '''39'''  (1964)  pp. 133–164  ''Mat. Sb.'' , '''60''' :  1  (1963)  pp. 89–119</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  V.I. Zaitsev,  "Projection spectra"  ''Trans. Moscow Math. Soc.'' , '''27'''  (1972)  pp. 135–200  ''Trudy Moskov. Mat. Obshch.'' , '''27'''  (1972)  pp. 129–119</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  "Une définition des nombres de Betti pour un ensemble fermé quelconque"  ''C.R. Acad. Sci. Paris'' , '''184'''  (1927)  pp. 317–319</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.S. Aleksandrov,  "Untersuchungen über Gestalt und Lage abgeschlossener Mengen beliebiger Dimension"  ''Ann. of Math.'' , '''30'''  (1929)  pp. 101–187</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  P.S. Aleksandrov,  "On the concept of space in topology"  ''Uspekhi Mat. Nauk'' , '''2''' :  1  (1947)  pp. 5–57  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  P.S. Aleksandrov,  "Einführung in die Mengenlehre und die allgemeine Topologie" , Deutsch. Verlag Wissenschaft.  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  P.S. Aleksandrov,  V.I. Ponomarev,  "Projection spectra"  J. Novák (ed.) , ''General topology and its relations to modern analysis and algebra'' , '''2''' , Czechoslovak. Acad. Sci.  (1967)  pp. 25–30  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  P.S. Aleksandrov,  V.V. Fedorchuk,  "The main aspects in the development of set-theoretical topology"  ''Russian Math. Surveys'' , '''33''' :  3  (1978)  pp. 1–53  ''Uspekhi Mat. Nauk'' , '''33''' :  3  (1978)  pp. 3–48</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  V.I. Ponomarev,  "Projective spectra and continuous mappings of paracompacta"  ''Transl. Amer. Math. Soc. (2)'' , '''39'''  (1964)  pp. 133–164  ''Mat. Sb.'' , '''60''' :  1  (1963)  pp. 89–119</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  V.I. Zaitsev,  "Projection spectra"  ''Trans. Moscow Math. Soc.'' , '''27'''  (1972)  pp. 135–200  ''Trudy Moskov. Mat. Obshch.'' , '''27'''  (1972)  pp. 129–119</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
In the West, the concept of a projection spectrum is generally considered to have mainly historical importance, as the first version of the crucial concept of inverse system. For instance, the fundamental continuity axiom of abstract homology (cf. [[Steenrod–Eilenberg axioms|Steenrod–Eilenberg axioms]]) is stated for complete limits of inverse systems of spaces. Picking out the upper limit succeeds, as indicated above, in representing a space by means of suitable nerves of coverings, but it combines badly with other topological constructions.
 
In the West, the concept of a projection spectrum is generally considered to have mainly historical importance, as the first version of the crucial concept of inverse system. For instance, the fundamental continuity axiom of abstract homology (cf. [[Steenrod–Eilenberg axioms|Steenrod–Eilenberg axioms]]) is stated for complete limits of inverse systems of spaces. Picking out the upper limit succeeds, as indicated above, in representing a space by means of suitable nerves of coverings, but it combines badly with other topological constructions.
  
In the 1950-s and 1960-s several topologists, principally S. Mardešić [[#References|[a2]]] and B.A. Pasynkov [[#References|[a5]]], discovered some undesirable features of the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150116.png" />-dimensional spaces as inverse limits of systems of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150117.png" />-dimensional polyhedra. The keynote of this work is sounded by Mardešić's theorem: Every compact Hausdorff space of covering dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150118.png" /> is an inverse limit of inverse limits of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p075150119.png" />-dimensional finite polyhedra. Recently Mardešić and collaborators have successfully explained some of the principal peculiarities, using the concept of an approximate inverse limit. The approximate inverse limit of an inverse system coincides with its complete limit; but one also permits approximate inverse systems. See [[#References|[a3]]], [[#References|[a4]]].
+
In the 1950-s and 1960-s several topologists, principally S. Mardešić [[#References|[a2]]] and B.A. Pasynkov [[#References|[a5]]], discovered some undesirable features of the representation of $  n $-
 +
dimensional spaces as inverse limits of systems of $  n $-
 +
dimensional polyhedra. The keynote of this work is sounded by Mardešić's theorem: Every compact Hausdorff space of covering dimension $  n $
 +
is an inverse limit of inverse limits of $  n $-
 +
dimensional finite polyhedra. Recently Mardešić and collaborators have successfully explained some of the principal peculiarities, using the concept of an approximate inverse limit. The approximate inverse limit of an inverse system coincides with its complete limit; but one also permits approximate inverse systems. See [[#References|[a3]]], [[#References|[a4]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Eilenberg,  N.E. Steenrod,  "Foundations of algebraic topology" , Princeton Univ. Press  (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S. Mardešić,  "On covering dimension and inverse limits of compact spaces"  ''Ill. J. Math.'' , '''4'''  (1960)  pp. 278–291</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  S. Mardešić,  L. Rubin,  "Approximate inverse systems of compacta and covering dimension"  ''Pacific J. Math.'' , '''138'''  (1989)  pp. 129–144</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  S. Mardešić,  J. Segal,  "Stability of almost commutative inverse systems for compacta"  ''Topology Appl.'' , '''31'''  (1989)  pp. 285–299</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B.A. Pasynkov,  "On spectra and dimension of topological spaces"  ''Mat. Sb.'' , '''57 (99)'''  (1962)  pp. 449–476  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Eilenberg,  N.E. Steenrod,  "Foundations of algebraic topology" , Princeton Univ. Press  (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S. Mardešić,  "On covering dimension and inverse limits of compact spaces"  ''Ill. J. Math.'' , '''4'''  (1960)  pp. 278–291</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  S. Mardešić,  L. Rubin,  "Approximate inverse systems of compacta and covering dimension"  ''Pacific J. Math.'' , '''138'''  (1989)  pp. 129–144</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  S. Mardešić,  J. Segal,  "Stability of almost commutative inverse systems for compacta"  ''Topology Appl.'' , '''31'''  (1989)  pp. 285–299</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B.A. Pasynkov,  "On spectra and dimension of topological spaces"  ''Mat. Sb.'' , '''57 (99)'''  (1962)  pp. 449–476  (In Russian)</TD></TR></table>

Revision as of 08:08, 6 June 2020


A family of simplicial complexes $ \{ {N _ \alpha } : {\alpha \in A } \} $( cf. Simplicial complex) indexed by a directed set $ ( A , > ) $ such that for every pair of indices $ \alpha , \alpha ^ \prime \in A $ for which $ \alpha ^ \prime > \alpha $ a simplicial mapping (projection) $ \pi _ \alpha ^ {\alpha ^ \prime } $ is defined from the complex $ N _ {\alpha ^ \prime } $ onto the complex $ N _ \alpha $. It is also required that $ \pi _ \alpha ^ {\alpha ^ {\prime\prime} } = \pi _ \alpha ^ {\alpha ^ \prime } \pi _ {\alpha ^ \prime } ^ {\alpha ^ {\prime\prime} } $ when $ \alpha ^ {\prime\prime} > \alpha ^ \prime > \alpha $( transitivity condition). Then it is said that a projection spectrum $ S = \{ N _ \alpha , \pi _ \alpha ^ {\alpha ^ \prime } , A \} $, or simply $ S = \{ N _ \alpha , \pi _ \alpha ^ {\alpha ^ \prime } \} $, is given. This concept is due to P.S. Aleksandrov (see [2]); it is essentially equivalent to the general concept of an inverse system, or an inverse spectrum (see System (in a category)). Indeed, every complex $ N _ \alpha $ naturally gives rise to the partially ordered set of simplices of this complex, and hence to a topological $ T _ {0} $- space $ N _ \alpha $. The projections $ \pi _ \alpha ^ {\alpha ^ \prime } $ then become continuous mappings. Conversely, if $ \{ N _ \alpha , \pi _ \alpha ^ {\alpha ^ \prime } \} $ is an inverse system of topological $ T _ {0} $- spaces and continuous projections $ \pi _ \alpha ^ {\alpha ^ \prime } $, then each $ T _ {0} $- space $ N _ \alpha $ naturally turns into a partially ordered set, and this partially ordered set is realized in the form of the simplicial complex $ N _ \alpha $. Here the continuous projections $ \pi _ \alpha ^ {\alpha ^ \prime } $ become simplicial mappings.

The concepts of a "projection spectrum" (and hence of an inverse system of spaces) and of a nerve of a system of sets (see below) have influenced the development of topology. After their introduction it became possible to speak about a theory of approximation of complicated topological and algebraic-topological objects by simpler ones.

If for every $ \alpha \in A $ the complex $ N _ \alpha $ is finite, then the spectrum $ S = \{ N _ \alpha , \pi _ \alpha ^ {\alpha ^ \prime } \} $ is called a finite projection spectrum. With each projection spectrum $ S = \{ N _ \alpha , \pi _ \alpha ^ {\alpha ^ \prime } \} $ the following concepts are associated. Any collection $ \xi = \{ {t _ \alpha } : {\alpha \in A } \} $ of simplices, one from every complex $ N _ \alpha $ of the spectrum $ S $, is called a thread of this spectrum if for $ \alpha ^ \prime > \alpha $ always $ \pi _ \alpha ^ {\alpha ^ \prime } t _ {\alpha ^ \prime } = t _ \alpha $, where $ t _ \alpha , t _ {\alpha ^ \prime } \in \xi $. The set $ \overline{S}\; $ of all threads with the topology whose base consists of the sets of the form $ O t _ {\alpha _ {0} } = \{ {\xi ^ \prime \in S } : {t _ {\alpha _ {0} } ^ \prime \leq t _ {\alpha _ {0} } } \} $, where $ \alpha _ {0} \in A $, $ t _ {\alpha _ {0} } \in N _ {\alpha _ {0} } $ are arbitrary and $ t _ {\alpha _ {0} } ^ \prime < t _ {\alpha _ {0} } $ means that the simplex $ t _ {\alpha _ {0} } ^ \prime $ of the thread $ \xi ^ \prime $ in the complex $ N _ {\alpha _ {0} } $ is a face of the simplex $ t _ {\alpha _ {0} } $, is called the complete limit of the spectrum $ S $. The same topology will be obtained by inducing on $ \overline{S}\; $ the topology of the Tikhonov product $ \Pi \{ { {\mathcal N} _ \alpha } : {\alpha \in A } \} $, where $ {\mathcal N} _ \alpha $ is the topological $ T _ {0} $- space corresponding to the complex $ N _ \alpha $. A thread $ \xi ^ \prime = \{ t _ \alpha ^ \prime \} $ is ambient to a thread $ \xi = \{ t _ \alpha \} $ if for every $ \alpha \in A $ one has $ t _ \alpha ^ \prime \geq t _ \alpha $. A thread $ \xi $ is called maximal (respectively, minimal) if there is no thread different from $ \xi $ which is ambient to $ \xi $( respectively, to which $ \xi $ is ambient). The subspace of the complete limit space $ \overline{S}\; $ of the spectrum $ S $ consisting of all the maximal (minimal) threads is called the upper (lower) limit of the spectrum $ S $. The complete limit $ \overline{S}\; $ is a semi-regular $ T _ {0} $- space, while the upper limit $ \widehat{S} $ and the lower limit $ \check{S} $ are $ T _ {1} $- spaces. If $ S $ is a finite projection spectrum, then $ \overline{S}\; $, $ \widehat{S} $ and $ \check{S} $ are compact spaces.

At the foundation of the entire theory of approximation of topological spaces by polyhedra, or more precisely by simplicial complexes, lies the concept, introduced by Aleksandrov (see [1]), of the nerve of a system of sets. The nerve of a given system $ \alpha $ of sets is defined to be the simplicial complex $ N _ \alpha $ whose vertices are in one-to-one correspondence with the elements of the system $ \alpha $ and a set of vertices determines a simplex of the complex $ N _ \alpha $ if and only if the sets of the system $ \alpha $ corresponding to those vertices have non-empty intersection.

It is more convenient to consider so-called canonical coverings of a space $ X $. A locally finite (finite) covering $ \alpha $ of the space $ X $ is called canonical if its elements are (closed) canonical sets (in another terminology, regular closed sets, cf. Canonical set) with disjoint interiors. For two canonical coverings $ \alpha ^ \prime , \alpha $ of the space $ X $, if $ \alpha ^ \prime $ follows $ \alpha $, i.e. if $ \alpha ^ \prime $ is a refinement of $ \alpha $( in this case $ \alpha ^ \prime > \alpha $), then the natural simplicial mapping $ \pi _ \alpha ^ {\alpha ^ \prime } $( the projection) of the nerve $ N _ {\alpha ^ \prime } $ onto the nerve $ N _ \alpha $ is defined; it is given by assigning to each element $ A ^ {\alpha ^ \prime } $ of $ \alpha ^ \prime $ that unique element $ A ^ \alpha $ of $ \alpha $ for which $ A ^ \alpha \supset A ^ {\alpha ^ \prime } $. Let $ \mathfrak A ( X) $( respectively, $ \mathfrak A _ {0} ( X) $) denote the collection of all locally finite (finite) canonical coverings of the space $ X $. For every $ \alpha \in \mathfrak A ( X) $( respectively, $ \alpha \in \mathfrak A _ {0} ( X) $), the nerve $ N _ \alpha $ of $ \alpha $ is considered. If $ \alpha ^ \prime > \alpha $, then a simplicial mapping $ \pi _ \alpha ^ {\alpha ^ \prime } : N _ {\alpha ^ \prime } \rightarrow N _ \alpha $ is defined. The projection spectrum $ S = \{ N _ \alpha , \pi _ \alpha ^ {\alpha ^ \prime } \} $ thus obtained is called the complete (respectively, finite) projection spectrum of the topological space $ X $. Aleksandrov [2] proved in 1928 that every metric ( $ n $- dimensional) compact space is the upper limit of an ( $ n $- dimensional) finite projection spectrum over a countable set of indices. A.G. Kurosh proved in 1934 that every compactum is the upper limit of its finite projection spectrum. In 1961, V.I. Ponomarev proved that every paracompactum is the upper limit of its complete projection spectrum, that is, the spectrum constructed over the set $ \mathfrak A ( X) $ of all locally finite canonical coverings of the space $ X $. Ponomarev has introduced the concept of a relaxation of a simplicial complex $ K $, by which he means any closed subcomplex $ K ^ \prime \subset K $ containing all vertices of the complex $ K $. The zero-dimensional complex consisting of all vertices of the complex $ K $ is called its total relaxation (or skeleton). By replacing all the complexes of a given projection spectrum by their (total) relaxations while preserving the projections, one obtains the (total) relaxation of the spectrum. The investigation of irreducible perfect mappings of paracompacta reduces to the study of the relaxations of their complete projection spectra. Here the limit of the total relaxation of the complete projection spectrum of a paracompactum $ X $ is the so-called absolute $ \dot{X} $ of $ X $, and the limit of the total relaxation of the finite projection spectrum of any regular space is the Stone—Čech compactification $ \beta \dot{X} $ of the absolute $ \dot{X} $ of that regular space. Every finite abstract projection spectrum is equivalent to the spectrum over a directed refining set of finite canonical coverings of some semi-regular compact $ T _ {0} $- space, that is, it is obtained from this spectrum by means of finitely many of the following operations: 1) replacement of a spectrum by an isomorphic spectrum; 2) replacement of a spectrum by a cofinal part of it; 3) replacement of a spectrum by a spectrum containing the given one as a cofinal part (Zaitsev's theorem).

The concepts of a nerve and a projection spectrum provided the means for reducing the properties of general spaces, first of all, paracompacta, compacta and metric compacta, to the properties of complexes and their simplicial mappings. This made it possible to define and to study homology and cohomology invariants not only of polyhedra but of general spaces (see Aleksandrov–Čech homology and cohomology; Spectral homology). All this has led to the synthesis of geometric and set-theoretic ideas in topology.

References

[1] P.S. Aleksandrov, "Une définition des nombres de Betti pour un ensemble fermé quelconque" C.R. Acad. Sci. Paris , 184 (1927) pp. 317–319
[2] P.S. Aleksandrov, "Untersuchungen über Gestalt und Lage abgeschlossener Mengen beliebiger Dimension" Ann. of Math. , 30 (1929) pp. 101–187
[3] P.S. Aleksandrov, "On the concept of space in topology" Uspekhi Mat. Nauk , 2 : 1 (1947) pp. 5–57 (In Russian)
[4] P.S. Aleksandrov, "Einführung in die Mengenlehre und die allgemeine Topologie" , Deutsch. Verlag Wissenschaft. (1984) (Translated from Russian)
[5] P.S. Aleksandrov, V.I. Ponomarev, "Projection spectra" J. Novák (ed.) , General topology and its relations to modern analysis and algebra , 2 , Czechoslovak. Acad. Sci. (1967) pp. 25–30 (In Russian)
[6] P.S. Aleksandrov, V.V. Fedorchuk, "The main aspects in the development of set-theoretical topology" Russian Math. Surveys , 33 : 3 (1978) pp. 1–53 Uspekhi Mat. Nauk , 33 : 3 (1978) pp. 3–48
[7] V.I. Ponomarev, "Projective spectra and continuous mappings of paracompacta" Transl. Amer. Math. Soc. (2) , 39 (1964) pp. 133–164 Mat. Sb. , 60 : 1 (1963) pp. 89–119
[8] V.I. Zaitsev, "Projection spectra" Trans. Moscow Math. Soc. , 27 (1972) pp. 135–200 Trudy Moskov. Mat. Obshch. , 27 (1972) pp. 129–119

Comments

In the West, the concept of a projection spectrum is generally considered to have mainly historical importance, as the first version of the crucial concept of inverse system. For instance, the fundamental continuity axiom of abstract homology (cf. Steenrod–Eilenberg axioms) is stated for complete limits of inverse systems of spaces. Picking out the upper limit succeeds, as indicated above, in representing a space by means of suitable nerves of coverings, but it combines badly with other topological constructions.

In the 1950-s and 1960-s several topologists, principally S. Mardešić [a2] and B.A. Pasynkov [a5], discovered some undesirable features of the representation of $ n $- dimensional spaces as inverse limits of systems of $ n $- dimensional polyhedra. The keynote of this work is sounded by Mardešić's theorem: Every compact Hausdorff space of covering dimension $ n $ is an inverse limit of inverse limits of $ n $- dimensional finite polyhedra. Recently Mardešić and collaborators have successfully explained some of the principal peculiarities, using the concept of an approximate inverse limit. The approximate inverse limit of an inverse system coincides with its complete limit; but one also permits approximate inverse systems. See [a3], [a4].

References

[a1] S. Eilenberg, N.E. Steenrod, "Foundations of algebraic topology" , Princeton Univ. Press (1966)
[a2] S. Mardešić, "On covering dimension and inverse limits of compact spaces" Ill. J. Math. , 4 (1960) pp. 278–291
[a3] S. Mardešić, L. Rubin, "Approximate inverse systems of compacta and covering dimension" Pacific J. Math. , 138 (1989) pp. 129–144
[a4] S. Mardešić, J. Segal, "Stability of almost commutative inverse systems for compacta" Topology Appl. , 31 (1989) pp. 285–299
[a5] B.A. Pasynkov, "On spectra and dimension of topological spaces" Mat. Sb. , 57 (99) (1962) pp. 449–476 (In Russian)
How to Cite This Entry:
Projection spectrum. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Projection_spectrum&oldid=18627
This article was adapted from an original article by V.I. Ponomarev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article