Pointwise convergence

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 54C35 [MSN][ZBL]

A type of convergence of sequences of functions (mappings). Let $f_n : X \rightarrow Y$, $n=1,2,\ldots$ where $X$ is some set and $Y$ is a topological space; then pointwise convergence means that for any element $x \in X$ the sequence of values $y_n = f_n(x)$, $n=1,2,\ldots$ converges in the space $Y$. The function $f : x \mapsto \lim_n y_n$ is then the pointwise limit of the sequence $(f_n)$. The definition extends to generalized sequences of functions and their values.

An important subclass of the pointwise-convergent sequences for the case of mappings between metric spaces (or, more generally, uniform spaces) is that of the uniformly-convergent sequences (cf. Uniform convergence).

See also Pointwise convergence, topology of.

How to Cite This Entry:
Pointwise convergence. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article