Namespaces
Variants
Actions

Difference between revisions of "Moutard transformation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 13 formulas out of 13 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 13 formulas, 13 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
A mapping of the same type as the [[Darboux transformation|Darboux transformation]]: it connects the solutions and the coefficients of equations
 
A mapping of the same type as the [[Darboux transformation|Darboux transformation]]: it connects the solutions and the coefficients of equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202401.png" /></td> </tr></table>
+
\begin{equation*} \psi _ { x y } + u ( x , y ) \psi = 0 \end{equation*}
  
so that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202402.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202403.png" /> are different solutions of it, then the solution of the twin equation with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202404.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202405.png" /> may be constructed as the solution of the system
+
so that if $\varphi$ and $\psi$ are different solutions of it, then the solution of the twin equation with $\psi \rightarrow \psi [ 1 ]$, $u ( x , y ) \rightarrow u [ 1 ] ( x , y )$ may be constructed as the solution of the system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202406.png" /></td> </tr></table>
+
\begin{equation*} ( \psi [ 1 ] \varphi ) _ { x } = - \varphi ^ { 2 } ( \psi \varphi ^ { - 1 } ) _ { x }, \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202407.png" /></td> </tr></table>
+
\begin{equation*} ( \psi [ 1 ] \varphi ) _ y = \varphi ^ { 2 } ( \psi \varphi ^ { - 1 } ) _ y. \end{equation*}
  
 
The transformed coefficient (a potential in mathematical physics) is given by
 
The transformed coefficient (a potential in mathematical physics) is given by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202408.png" /></td> </tr></table>
+
\begin{equation*} u [ 1 ] = u - 2 ( \operatorname { log } \varphi ) _ { x y } = - u + \frac { \varphi _ { x } \varphi_y } { \varphi ^ { 2 } }; \end{equation*}
  
 
in other words,
 
in other words,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202409.png" /></td> </tr></table>
+
\begin{equation*} \psi [ 1 ] = \psi - \frac { \varphi \Omega ( \varphi , \psi ) } { \Omega ( \varphi , \varphi ) }, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m12024010.png" /> is the integral of the exact differential form
+
where $\Omega$ is the integral of the exact differential form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m12024011.png" /></td> </tr></table>
+
\begin{equation*} d \Omega = \varphi \psi _ { x } d x + \psi \varphi_y d y. \end{equation*}
  
 
The important feature defining it is that the transform is parametrized by a pair of solutions of the equation and that the transform vanishes if the solutions coincide.
 
The important feature defining it is that the transform is parametrized by a pair of solutions of the equation and that the transform vanishes if the solutions coincide.
  
Clearly, the Moutard equation can be transformed to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m12024013.png" />-dimensional Schrödinger equation (cf. also [[Schrödinger equation|Schrödinger equation]]), and can be studied in connection with the central problems of classical [[Differential geometry|differential geometry]]. In the theory of solitons (cf. [[Soliton|Soliton]]) it enters via Lax pairs for non-linear equations as the Nizhik–Veselov–Novikov equations [[#References|[a1]]], [[#References|[a2]]].
+
Clearly, the Moutard equation can be transformed to a $2$-dimensional Schrödinger equation (cf. also [[Schrödinger equation|Schrödinger equation]]), and can be studied in connection with the central problems of classical [[Differential geometry|differential geometry]]. In the theory of solitons (cf. [[Soliton|Soliton]]) it enters via Lax pairs for non-linear equations as the Nizhik–Veselov–Novikov equations [[#References|[a1]]], [[#References|[a2]]].
  
 
In [[#References|[a3]]] the Moutard transformation appears in the context of Painlevé analysis.
 
In [[#References|[a3]]] the Moutard transformation appears in the context of Painlevé analysis.
Line 30: Line 38:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Athorne,  J.J.C. Nimmo,  "On the Moutard transformation for integrable partial differential equations"  ''Inverse Problems'' , '''7'''  (1991)  pp. 809–826</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  V.B. Matveev,  M.A. Salle,  "Darboux transformations and solitons" , Springer  (1991)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  P.G. Estevez,  S. Leble,  "A wave equation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m12024014.png" />: Painlevé analysis and solutions"  ''Inverse Problems'' , '''11'''  (1995)  pp. 925–937</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  C. Athorne,  "On the characterization of Moutard transformations"  ''Inverse Problems'' , '''9'''  (1993)  pp. 217–232</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  E. Gahzha,  "On completeness of the Moutard transformations"  ''solv-int@xyz.lanl.gov'' , '''9606001'''  (1996)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  C. Athorne,  J.J.C. Nimmo,  "On the Moutard transformation for integrable partial differential equations"  ''Inverse Problems'' , '''7'''  (1991)  pp. 809–826</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  V.B. Matveev,  M.A. Salle,  "Darboux transformations and solitons" , Springer  (1991)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  P.G. Estevez,  S. Leble,  "A wave equation in $2 n + 1$: Painlevé analysis and solutions"  ''Inverse Problems'' , '''11'''  (1995)  pp. 925–937</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  C. Athorne,  "On the characterization of Moutard transformations"  ''Inverse Problems'' , '''9'''  (1993)  pp. 217–232</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  E. Gahzha,  "On completeness of the Moutard transformations"  ''solv-int@xyz.lanl.gov'' , '''9606001'''  (1996)</td></tr></table>

Revision as of 17:00, 1 July 2020

A mapping of the same type as the Darboux transformation: it connects the solutions and the coefficients of equations

\begin{equation*} \psi _ { x y } + u ( x , y ) \psi = 0 \end{equation*}

so that if $\varphi$ and $\psi$ are different solutions of it, then the solution of the twin equation with $\psi \rightarrow \psi [ 1 ]$, $u ( x , y ) \rightarrow u [ 1 ] ( x , y )$ may be constructed as the solution of the system

\begin{equation*} ( \psi [ 1 ] \varphi ) _ { x } = - \varphi ^ { 2 } ( \psi \varphi ^ { - 1 } ) _ { x }, \end{equation*}

\begin{equation*} ( \psi [ 1 ] \varphi ) _ y = \varphi ^ { 2 } ( \psi \varphi ^ { - 1 } ) _ y. \end{equation*}

The transformed coefficient (a potential in mathematical physics) is given by

\begin{equation*} u [ 1 ] = u - 2 ( \operatorname { log } \varphi ) _ { x y } = - u + \frac { \varphi _ { x } \varphi_y } { \varphi ^ { 2 } }; \end{equation*}

in other words,

\begin{equation*} \psi [ 1 ] = \psi - \frac { \varphi \Omega ( \varphi , \psi ) } { \Omega ( \varphi , \varphi ) }, \end{equation*}

where $\Omega$ is the integral of the exact differential form

\begin{equation*} d \Omega = \varphi \psi _ { x } d x + \psi \varphi_y d y. \end{equation*}

The important feature defining it is that the transform is parametrized by a pair of solutions of the equation and that the transform vanishes if the solutions coincide.

Clearly, the Moutard equation can be transformed to a $2$-dimensional Schrödinger equation (cf. also Schrödinger equation), and can be studied in connection with the central problems of classical differential geometry. In the theory of solitons (cf. Soliton) it enters via Lax pairs for non-linear equations as the Nizhik–Veselov–Novikov equations [a1], [a2].

In [a3] the Moutard transformation appears in the context of Painlevé analysis.

There is a generalization of Moutard transformations to higher dimensions [a4]; a proof of the (local) completeness can be found in [a5].

References

[a1] C. Athorne, J.J.C. Nimmo, "On the Moutard transformation for integrable partial differential equations" Inverse Problems , 7 (1991) pp. 809–826
[a2] V.B. Matveev, M.A. Salle, "Darboux transformations and solitons" , Springer (1991)
[a3] P.G. Estevez, S. Leble, "A wave equation in $2 n + 1$: Painlevé analysis and solutions" Inverse Problems , 11 (1995) pp. 925–937
[a4] C. Athorne, "On the characterization of Moutard transformations" Inverse Problems , 9 (1993) pp. 217–232
[a5] E. Gahzha, "On completeness of the Moutard transformations" solv-int@xyz.lanl.gov , 9606001 (1996)
How to Cite This Entry:
Moutard transformation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Moutard_transformation&oldid=50368
This article was adapted from an original article by S.B. Leble (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article