Matrix ring

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 16S50 [MSN][ZBL]

full matrix ring

The ring of all square matrices of a fixed order over a ring $R$, with the operations of matrix addition and matrix multiplication. The ring of $(n \times n)$-dimensional matrices over $R$ is denoted by $R_n$ or $M_n(R)$. Throughout this article $R$ is an associative ring with identity.

The ring $R_n$ is isomorphic to the ring $\mathop{End}(M)$ of all endomorphisms of the free right $R$-module $M = R^n$, possessing a basis with $n$ elements. The identity matrix $E_n = \text{diag}(1,\ldots,1)$ is the identity in $R_n$. An associative ring $A$ with identity 1 is isomorphic to $R_n$ if and only if there is in $A$ a set of $n^2$ elements $e_{ij}$, $i,j=1,\ldots,n$, subject to the following conditions:

1) $e_{ij}e_{kl} = \delta_{jk} e_{il}$, $\sum_{i=1}^n e_{ii}e_{ii} = 1$;

2) the centralizer of the set of elements $e_{ij}$ in $A$ is isomorphic to $R$.

The centre of $R_n$ coincides with $\mathcal{Z}(R) E_n$, where $\mathcal{Z}(R)$ denotes the centre of $R$; for $n>1$ the ring $R_n$ is non-commutative.

The multiplicative group of the ring $R_n$ (the group of all invertible elements), called the general linear group, is denoted by $\mathop{GL}_n(R)$. A matrix from $R_n$ is invertible in $R_n$ if and only if its columns form a basis of the free right module of all $(n \times 1)$-dimensional matrices over $R$. If $R$ is commutative, then the determinant is defined as a multiplicative map from $R_n$ to $R$ and invertibility of a matrix $X$ in $R_n$ is equivalent to the invertibility of its determinant, $\det X$, in $R$. The isomorphism $R_{mn} \sim (R_m)_n$ holds.

The two-sided ideals in $R_n$ are of the form $J_n$, where $J$ is a two-sided ideal in $R$ and so the ring $R_n$ is simple if and only if $R$ is simple. An Artinian ring is simple if and only if it is isomorphic to a matrix ring over a skew-field (the Wedderburn–Artin theorem). If $\mathcal{J}(R)$ denotes the Jacobson radical of the ring $R$, then $\mathcal{J}(R_n) = \mathcal{J}(R)_n$. Consequently, every matrix ring over a semi-simple ring $R$ is semi-simple. If $R$ is a regular ring (in the sense of von Neumann) (i.e. if for every $a \in R$ there is a $b \in R$ such that $aba = a$), then so is $R_n$. If $R$ is a ring with an invariant basis number, i.e. the number of elements in a basis of each free $R$-module does not depend on the choice of the basis, then $R_n$ also has this property. The rings $R$ and $R_n$ are equivalent in the sense of Morita (see Morita equivalence): The category of $R$-modules is equivalent to the category of $R_n$-modules. However, the condition that projective $R$-modules are free does not necessarily entail that projective $R_n$-modules are free too. For instance, if $R$ is a field and $n>1$, then there exist finitely-generated projective $R_n$-modules which are not free.


[1] C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973)
[2] J. Lambek, "Lectures on rings and modules" , Blaisdell (1966)
[3] L.A. Bokut', "Associative rings" , 1 , Novosibirsk (1977) (In Russian)



[a1] P.M. Cohn, "Algebra" , 1–2 , Wiley (1974–1977)
How to Cite This Entry:
Matrix ring. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by D.A. Suprunenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article