Namespaces
Variants
Actions

Difference between revisions of "Limit-absorption principle"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A manner for uniquely finding solutions to equations analogous to the [[Helmholtz equation|Helmholtz equation]] by introducing an infinitesimal absorption. Mathematically the principle is as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l0588301.png" /> be an unbounded region in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l0588302.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l0588303.png" /> be the self-adjoint operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l0588304.png" /> given by the differential expression <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l0588305.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l0588306.png" />, and homogeneous boundary conditions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l0588307.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l0588308.png" /> be a point in the continuous spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l0588309.png" />. Then for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883010.png" /> the equation
+
<!--
 +
l0588301.png
 +
$#A+1 = 67 n = 1
 +
$#C+1 = 67 : ~/encyclopedia/old_files/data/L058/L.0508830 Limit\AAhabsorption principle
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883011.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
is uniquely solvable in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883012.png" />, and in certain cases it is possible to find solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883013.png" /> of the equation
+
A manner for uniquely finding solutions to equations analogous to the [[Helmholtz equation|Helmholtz equation]] by introducing an infinitesimal absorption. Mathematically the principle is as follows. Let  $  \Omega $
 +
be an unbounded region in  $  \mathbf R  ^ {n} $,
 +
let  $  P $
 +
be the self-adjoint operator on  $  L _ {2} ( \Omega ) $
 +
given by the differential expression  $  P ( x, \partial  / \partial  x) $,
 +
$  x \in \Omega $,  
 +
and homogeneous boundary conditions on  $  \Omega $
 +
and let  $  \lambda $
 +
be a point in the continuous spectrum of  $  P $.
 +
Then for  $  \epsilon \neq 0 $
 +
the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883014.png" /></td> </tr></table>
+
$$
 +
Pu _  \epsilon  = \
 +
( \lambda + i \epsilon )
 +
u _  \epsilon  + f
 +
$$
 +
 
 +
is uniquely solvable in  $  L _ {2} ( \Omega ) $,
 +
and in certain cases it is possible to find solutions  $  u = u _  \pm  $
 +
of the equation
 +
 
 +
$$
 +
Pu  = \lambda u + f
 +
$$
  
 
by the limit transition
 
by the limit transition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883015.png" /></td> </tr></table>
+
$$
 +
u _  \pm  = \
 +
\lim\limits _ {\epsilon \rightarrow \pm  0 } \
 +
u _  \epsilon  .
 +
$$
 +
 
 +
It is assumed here that  $  f $
 +
has compact support and the convergence  $  u _  \epsilon  \rightarrow u _  \pm  $,
 +
as  $  \epsilon \rightarrow \pm  0 $,
 +
is understood in the sense of  $  L _ {2} ( \Omega  ^  \prime  ) $,
 +
where  $  \Omega  ^  \prime  $
 +
is an arbitrary bounded set in  $  \Omega $.  
 +
Since  $  \lambda $
 +
is a point of the continuous spectrum of  $  P $,
 +
the limit in  $  L _ {2} ( \Omega ) $
 +
does not exist, in general.
 +
 
 +
The first limit-absorption principle was formulated for the Helmholtz equation in  $  \mathbf R  ^ {2} $(
 +
cf. [[#References|[1]]]):
  
It is assumed here that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883016.png" /> has compact support and the convergence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883017.png" />, as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883018.png" />, is understood in the sense of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883020.png" /> is an arbitrary bounded set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883021.png" />. Since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883022.png" /> is a point of the continuous spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883023.png" />, the limit in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883024.png" /> does not exist, in general.
+
$$
 +
( \Delta + k  ^ {2} ) u  = - f,\ \
 +
\Omega  = \mathbf R  ^ {2} ,
 +
$$
  
The first limit-absorption principle was formulated for the Helmholtz equation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883025.png" /> (cf. [[#References|[1]]]):
+
$$
 +
P  =  - \Delta ,\  \lambda  =  - k  ^ {2}  < 0.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883026.png" /></td> </tr></table>
+
The solutions  $  u _  \pm  $
 +
found using this principle are diverging or converging waves and satisfy the [[Radiation conditions|radiation conditions]] at infinity. These results were carried over (cf. [[#References|[2]]], [[#References|[3]]]) to elliptic boundary value problems in the exterior of bounded regions in  $  \mathbf R  ^ {n} $
 +
for an operator
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883027.png" /></td> </tr></table>
+
$$ \tag{* }
 +
P \left ( x,\
 +
{
 +
\frac \partial {\partial  x }
 +
}
 +
\right )  = -
 +
\sum _ {k, j = 1 } ^ { n }
 +
{
 +
\frac \partial {\partial  x _ {k} }
 +
}
 +
\left ( a _ {kj}
 +
\frac \partial {\partial  x _ {j} }
  
The solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883028.png" /> found using this principle are diverging or converging waves and satisfy the [[Radiation conditions|radiation conditions]] at infinity. These results were carried over (cf. [[#References|[2]]], [[#References|[3]]]) to elliptic boundary value problems in the exterior of bounded regions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883029.png" /> for an operator
+
\right ) + q ( x),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883030.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
where the coefficients  $  a _ {kj} ( x) $
 +
tend to constants sufficiently rapidly as  $  | x | \rightarrow \infty $.
 +
In order that the limit-absorption principle holds in this case it is necessary that  $  \lambda $
 +
is not an eigen value of  $  P $
 +
or that  $  f $
 +
is orthogonal to the eigen functions. A theorem of T. Kato (cf. [[#References|[3]]]) gives sufficient conditions for the absence of eigen values in the continuous spectrum of the operator  $  P = - \Delta + q ( x) $.
 +
Such a theorem has been obtained for the operator (*) (cf. [[#References|[3]]]). The limit-absorption principle has been substantiated for certain regions with non-compact boundary (cf. [[#References|[3]]], [[#References|[4]]]).
  
where the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883031.png" /> tend to constants sufficiently rapidly as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883032.png" />. In order that the limit-absorption principle holds in this case it is necessary that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883033.png" /> is not an eigen value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883034.png" /> or that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883035.png" /> is orthogonal to the eigen functions. A theorem of T. Kato (cf. [[#References|[3]]]) gives sufficient conditions for the absence of eigen values in the continuous spectrum of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883036.png" />. Such a theorem has been obtained for the operator (*) (cf. [[#References|[3]]]). The limit-absorption principle has been substantiated for certain regions with non-compact boundary (cf. [[#References|[3]]], [[#References|[4]]]).
+
A limit-absorption principle and corresponding radiation conditions have been found for higher-order equations and for systems of equations (cf. [[#References|[5]]][[#References|[7]]]); they consist of the following. Let  $  P = ( i \partial  / \partial  x) $
 +
be an elliptic (or hypo-elliptic) operator satisfying: 1) the polynomial  $  P ( \sigma ) $
 +
has real coefficients; 2) the surface  $  P ( \sigma ) = 0 $,
 +
$  \sigma \in \mathbf R  ^ {n} $,
 +
decomposes into connected smooth surfaces  $  S _ {j} $,
 +
$  1 \leq  j \leq  k $,
 +
whose curvatures do not vanish; and 3)  $  \mathop{\rm grad}  P ( \sigma ) \neq 0 $
 +
on  $  S _ {j} $.
 +
Suppose that an orientation is given on  $  S _ {j} $,
 +
i.e. for each surface one has independently chosen a normal direction  $  \nu $.  
 +
Let  $  \omega = x/ | x | $,
 +
let  $  \sigma _ {j} = \sigma _ {j} ( \omega ) $
 +
be a point on  $  S _ {j} $
 +
at which  $  \nu $
 +
and  $  \omega $
 +
have identical direction and let  $  \mu _ {j} ( \omega ) = ( \sigma _ {j} ( \omega ), \omega ) $.  
 +
Then the function  $  u ( x) $
 +
does satisfy the radiation conditions if it can be represented as
  
A limit-absorption principle and corresponding radiation conditions have been found for higher-order equations and for systems of equations (cf. [[#References|[5]]]–[[#References|[7]]]); they consist of the following. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883037.png" /> be an elliptic (or hypo-elliptic) operator satisfying: 1) the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883038.png" /> has real coefficients; 2) the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883040.png" />, decomposes into connected smooth surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883042.png" />, whose curvatures do not vanish; and 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883043.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883044.png" />. Suppose that an orientation is given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883045.png" />, i.e. for each surface one has independently chosen a normal direction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883046.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883047.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883048.png" /> be a point on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883049.png" /> at which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883051.png" /> have identical direction and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883052.png" />. Then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883053.png" /> does satisfy the radiation conditions if it can be represented as
+
$$
 +
u  =  \sum _ {j = 1 } ^ { k }  u _ {j} ( x),\ \
 +
u _ {j}  = O ( r ^ {( 1 - n)/2 } ),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883054.png" /></td> </tr></table>
+
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883055.png" /></td> </tr></table>
+
\frac{\partial  u _ {j} }{\partial  r }
 +
- i \mu _ {j} ( \omega ) u _ {j}  = o ( r ^ {( 1 - n)/2 } ),\  r \rightarrow \infty .
 +
$$
  
 
These conditions determine a unique solution of the equation
 
These conditions determine a unique solution of the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883056.png" /></td> </tr></table>
+
$$
 +
P \left ( i
 +
{
 +
\frac \partial {\partial  x }
 +
}
 +
\right )
 +
= f,\ \
 +
x \in \mathbf R  ^ {n} ,
 +
$$
  
for any function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883057.png" /> with compact support. The limit-absorption principle for this equation is that this solution can be obtained as the limit, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883058.png" />, of the unique solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883059.png" /> of the elliptic equation
+
for any function $  f $
 +
with compact support. The limit-absorption principle for this equation is that this solution can be obtained as the limit, for $  \epsilon \rightarrow + 0 $,  
 +
of the unique solution $  u _  \epsilon  ( x) \in L _ {2} ( \mathbf R  ^ {n} ) $
 +
of the elliptic equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883060.png" /></td> </tr></table>
+
$$
 +
P \left ( i
 +
{
 +
\frac \partial {\partial  x }
 +
}
 +
\right )
 +
u _  \epsilon  + i \epsilon Q
 +
\left ( i
 +
{
 +
\frac \partial {\partial  x }
 +
}
 +
\right )
 +
u _  \epsilon  = f,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883061.png" /> has real coefficients and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883062.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883063.png" />. Depending on the choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883064.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883065.png" />, one obtains in the limit solutions satisfying the radiation conditions corresponding to some orientation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883066.png" />. This principle has been substantiated for higher-order equations and systems with variable coefficients in the exterior of bounded regions (cf. [[#References|[5]]]–[[#References|[7]]]), as well as in the case of non-convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883067.png" />. For such equations there is also a uniqueness theorem of Kato type.
+
where $  Q ( \sigma ) $
 +
has real coefficients and $  Q ( \sigma ) \neq 0 $
 +
on $  S _ {j} $.  
 +
Depending on the choice of $  \mathop{\rm sign} _ {\sigma \in S _ {j}  }  Q ( \sigma ) $,  
 +
$  1 \leq  j \leq  k $,  
 +
one obtains in the limit solutions satisfying the radiation conditions corresponding to some orientation of $  S _ {j} $.  
 +
This principle has been substantiated for higher-order equations and systems with variable coefficients in the exterior of bounded regions (cf. [[#References|[5]]]–[[#References|[7]]]), as well as in the case of non-convex $  S _ {j} $.  
 +
For such equations there is also a uniqueness theorem of Kato type.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. [V.S. Ignatovskii] Ignatowsky,  "Reflexion elektromagnetischer Wellen an einem Drahte"  ''Ann. der Physik'' , '''18''' :  13  (1905)  pp. 495–522</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.Ya. Povzner,  "On the decomposition of arbitrary functions into eigenfunctions of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883068.png" />"  ''Mat. Sb.'' , '''32''' :  1  (1953)  pp. 109–156  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D.M. Eidus,  "The principle of limiting amplitude"  ''Russian Math. Surveys'' , '''24''' :  3  (1969)  pp. 97–167  ''Uspekhi Mat. Nauk'' , '''24''' :  3  (1969)  pp. 91–156</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.V. Sveshnikov,  "The limit absorption principle for a wave guide"  ''Dokl. Akad. Nauk SSSR'' , '''80''' :  3  (1951)  pp. 345–347  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  B.R. Vainberg,  "Principles of radiation, limit absorption and limit amplitude in the general theory of partial differential equations"  ''Russian Math. Surveys'' , '''21''' :  3  (1966)  pp. 115–193  ''Uspekhi Mat. Nauk'' , '''21''' :  3  (1966)  pp. 115–194</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  B.R. Vainberg,  "On elliptic problems in unbounded domains"  ''Math. USSR Sb.'' , '''4'''  (1968)  pp. 419–444  ''Mat. Sb.'' , '''75''' :  3  (1968)  pp. 454–480</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  B.R. Vainberg,  "Asymptotic methods in equations of mathematical physics" , Gordon &amp; Breach  (1988)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. [V.S. Ignatovskii] Ignatowsky,  "Reflexion elektromagnetischer Wellen an einem Drahte"  ''Ann. der Physik'' , '''18''' :  13  (1905)  pp. 495–522</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.Ya. Povzner,  "On the decomposition of arbitrary functions into eigenfunctions of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883068.png" />"  ''Mat. Sb.'' , '''32''' :  1  (1953)  pp. 109–156  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D.M. Eidus,  "The principle of limiting amplitude"  ''Russian Math. Surveys'' , '''24''' :  3  (1969)  pp. 97–167  ''Uspekhi Mat. Nauk'' , '''24''' :  3  (1969)  pp. 91–156</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.V. Sveshnikov,  "The limit absorption principle for a wave guide"  ''Dokl. Akad. Nauk SSSR'' , '''80''' :  3  (1951)  pp. 345–347  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  B.R. Vainberg,  "Principles of radiation, limit absorption and limit amplitude in the general theory of partial differential equations"  ''Russian Math. Surveys'' , '''21''' :  3  (1966)  pp. 115–193  ''Uspekhi Mat. Nauk'' , '''21''' :  3  (1966)  pp. 115–194</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  B.R. Vainberg,  "On elliptic problems in unbounded domains"  ''Math. USSR Sb.'' , '''4'''  (1968)  pp. 419–444  ''Mat. Sb.'' , '''75''' :  3  (1968)  pp. 454–480</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  B.R. Vainberg,  "Asymptotic methods in equations of mathematical physics" , Gordon &amp; Breach  (1988)  (Translated from Russian)</TD></TR></table>

Revision as of 22:16, 5 June 2020


A manner for uniquely finding solutions to equations analogous to the Helmholtz equation by introducing an infinitesimal absorption. Mathematically the principle is as follows. Let $ \Omega $ be an unbounded region in $ \mathbf R ^ {n} $, let $ P $ be the self-adjoint operator on $ L _ {2} ( \Omega ) $ given by the differential expression $ P ( x, \partial / \partial x) $, $ x \in \Omega $, and homogeneous boundary conditions on $ \Omega $ and let $ \lambda $ be a point in the continuous spectrum of $ P $. Then for $ \epsilon \neq 0 $ the equation

$$ Pu _ \epsilon = \ ( \lambda + i \epsilon ) u _ \epsilon + f $$

is uniquely solvable in $ L _ {2} ( \Omega ) $, and in certain cases it is possible to find solutions $ u = u _ \pm $ of the equation

$$ Pu = \lambda u + f $$

by the limit transition

$$ u _ \pm = \ \lim\limits _ {\epsilon \rightarrow \pm 0 } \ u _ \epsilon . $$

It is assumed here that $ f $ has compact support and the convergence $ u _ \epsilon \rightarrow u _ \pm $, as $ \epsilon \rightarrow \pm 0 $, is understood in the sense of $ L _ {2} ( \Omega ^ \prime ) $, where $ \Omega ^ \prime $ is an arbitrary bounded set in $ \Omega $. Since $ \lambda $ is a point of the continuous spectrum of $ P $, the limit in $ L _ {2} ( \Omega ) $ does not exist, in general.

The first limit-absorption principle was formulated for the Helmholtz equation in $ \mathbf R ^ {2} $( cf. [1]):

$$ ( \Delta + k ^ {2} ) u = - f,\ \ \Omega = \mathbf R ^ {2} , $$

$$ P = - \Delta ,\ \lambda = - k ^ {2} < 0. $$

The solutions $ u _ \pm $ found using this principle are diverging or converging waves and satisfy the radiation conditions at infinity. These results were carried over (cf. [2], [3]) to elliptic boundary value problems in the exterior of bounded regions in $ \mathbf R ^ {n} $ for an operator

$$ \tag{* } P \left ( x,\ { \frac \partial {\partial x } } \right ) = - \sum _ {k, j = 1 } ^ { n } { \frac \partial {\partial x _ {k} } } \left ( a _ {kj} \frac \partial {\partial x _ {j} } \right ) + q ( x), $$

where the coefficients $ a _ {kj} ( x) $ tend to constants sufficiently rapidly as $ | x | \rightarrow \infty $. In order that the limit-absorption principle holds in this case it is necessary that $ \lambda $ is not an eigen value of $ P $ or that $ f $ is orthogonal to the eigen functions. A theorem of T. Kato (cf. [3]) gives sufficient conditions for the absence of eigen values in the continuous spectrum of the operator $ P = - \Delta + q ( x) $. Such a theorem has been obtained for the operator (*) (cf. [3]). The limit-absorption principle has been substantiated for certain regions with non-compact boundary (cf. [3], [4]).

A limit-absorption principle and corresponding radiation conditions have been found for higher-order equations and for systems of equations (cf. [5][7]); they consist of the following. Let $ P = ( i \partial / \partial x) $ be an elliptic (or hypo-elliptic) operator satisfying: 1) the polynomial $ P ( \sigma ) $ has real coefficients; 2) the surface $ P ( \sigma ) = 0 $, $ \sigma \in \mathbf R ^ {n} $, decomposes into connected smooth surfaces $ S _ {j} $, $ 1 \leq j \leq k $, whose curvatures do not vanish; and 3) $ \mathop{\rm grad} P ( \sigma ) \neq 0 $ on $ S _ {j} $. Suppose that an orientation is given on $ S _ {j} $, i.e. for each surface one has independently chosen a normal direction $ \nu $. Let $ \omega = x/ | x | $, let $ \sigma _ {j} = \sigma _ {j} ( \omega ) $ be a point on $ S _ {j} $ at which $ \nu $ and $ \omega $ have identical direction and let $ \mu _ {j} ( \omega ) = ( \sigma _ {j} ( \omega ), \omega ) $. Then the function $ u ( x) $ does satisfy the radiation conditions if it can be represented as

$$ u = \sum _ {j = 1 } ^ { k } u _ {j} ( x),\ \ u _ {j} = O ( r ^ {( 1 - n)/2 } ), $$

$$ \frac{\partial u _ {j} }{\partial r } - i \mu _ {j} ( \omega ) u _ {j} = o ( r ^ {( 1 - n)/2 } ),\ r \rightarrow \infty . $$

These conditions determine a unique solution of the equation

$$ P \left ( i { \frac \partial {\partial x } } \right ) u = f,\ \ x \in \mathbf R ^ {n} , $$

for any function $ f $ with compact support. The limit-absorption principle for this equation is that this solution can be obtained as the limit, for $ \epsilon \rightarrow + 0 $, of the unique solution $ u _ \epsilon ( x) \in L _ {2} ( \mathbf R ^ {n} ) $ of the elliptic equation

$$ P \left ( i { \frac \partial {\partial x } } \right ) u _ \epsilon + i \epsilon Q \left ( i { \frac \partial {\partial x } } \right ) u _ \epsilon = f, $$

where $ Q ( \sigma ) $ has real coefficients and $ Q ( \sigma ) \neq 0 $ on $ S _ {j} $. Depending on the choice of $ \mathop{\rm sign} _ {\sigma \in S _ {j} } Q ( \sigma ) $, $ 1 \leq j \leq k $, one obtains in the limit solutions satisfying the radiation conditions corresponding to some orientation of $ S _ {j} $. This principle has been substantiated for higher-order equations and systems with variable coefficients in the exterior of bounded regions (cf. [5][7]), as well as in the case of non-convex $ S _ {j} $. For such equations there is also a uniqueness theorem of Kato type.

References

[1] W. [V.S. Ignatovskii] Ignatowsky, "Reflexion elektromagnetischer Wellen an einem Drahte" Ann. der Physik , 18 : 13 (1905) pp. 495–522
[2] A.Ya. Povzner, "On the decomposition of arbitrary functions into eigenfunctions of the operator " Mat. Sb. , 32 : 1 (1953) pp. 109–156 (In Russian)
[3] D.M. Eidus, "The principle of limiting amplitude" Russian Math. Surveys , 24 : 3 (1969) pp. 97–167 Uspekhi Mat. Nauk , 24 : 3 (1969) pp. 91–156
[4] A.V. Sveshnikov, "The limit absorption principle for a wave guide" Dokl. Akad. Nauk SSSR , 80 : 3 (1951) pp. 345–347 (In Russian)
[5] B.R. Vainberg, "Principles of radiation, limit absorption and limit amplitude in the general theory of partial differential equations" Russian Math. Surveys , 21 : 3 (1966) pp. 115–193 Uspekhi Mat. Nauk , 21 : 3 (1966) pp. 115–194
[6] B.R. Vainberg, "On elliptic problems in unbounded domains" Math. USSR Sb. , 4 (1968) pp. 419–444 Mat. Sb. , 75 : 3 (1968) pp. 454–480
[7] B.R. Vainberg, "Asymptotic methods in equations of mathematical physics" , Gordon & Breach (1988) (Translated from Russian)
How to Cite This Entry:
Limit-absorption principle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Limit-absorption_principle&oldid=13580
This article was adapted from an original article by B.R. Vainberg (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article