Namespaces
Variants
Actions

Difference between revisions of "Lie group, exponential"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (Converted formulas to TeX.)
m (Added category TEXdone)
Line 1: Line 1:
 +
{{TEX|done}}
 +
 
''Lie group of type $(E)$''
 
''Lie group of type $(E)$''
  
Line 8: Line 10:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"J. Dixmier,  "L'application exponentielles dans les groupes de Lie résolubles"  ''Bull. Soc. Math. France'' , '''85'''  (1957)  pp. 113–121</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"M. Saitô,  "Sur certains groupes de Lie résolubles I, II"  ''Sci. Papers Coll. Gen. Educ. Univ. Tokyo'' , '''7'''  (1957)  pp. 1–11; 157–168</TD></TR></table>
+
{|
 
+
|-
 
+
|valign="top"|{{Ref|Be}}|| P. Bernal,  et al.,  "Répresentation des groupes de Lie résolubles" , Dunod  (1972)
 
+
|-
====Comments====
+
|valign="top"|{{Ref|Di}}|| J. Dixmier,  "L'application exponentielles dans les groupes de Lie résolubles"  ''Bull. Soc. Math. France'' , '''85'''  (1957)  pp. 113–121
 
+
|-
 
+
|valign="top"|{{Ref|Sa}}|| M. Saitô,  "Sur certains groupes de Lie résolubles I, II"  ''Sci. Papers Coll. Gen. Educ. Univ. Tokyo'' , '''7'''  (1957)  pp. 1–11; 157–168
====References====
+
|-
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P. Bernal,  et al.,  "Répresentation des groupes de Lie résolubles" , Dunod  (1972)</TD></TR></table>
+
|}

Revision as of 14:20, 26 January 2014


Lie group of type $(E)$

A real finite-dimensional Lie group $G$ for which the exponential mapping $\exp\colon \mathfrak{g} \to G$, where $\mathfrak{g}$ is the Lie algebra of $G$, is a diffeomorphism.

Any exponential Lie group is solvable and simply connected and its Lie algebra is an exponential Lie algebra (cf. Lie algebra, exponential). The class of exponential Lie groups is closed with respect to passing to connected subgroups, forming quotient groups by a connected normal subgroup and forming finite direct products, but it is not closed with respect to extensions. A supersolvable Lie group (in particular, a nilpotent Lie group) is exponential if it is simply-connected (cf. Lie group, supersolvable)

The intersection of connected subgroups of an exponential Lie group is connected. The centralizer of an arbitrary subset is also connected. A simply-connected Lie group is exponential if and only if it has no quotient groups containing the universal covering group of motions of the Euclidean plane as a subgroup.

References

[Be] P. Bernal, et al., "Répresentation des groupes de Lie résolubles" , Dunod (1972)
[Di] J. Dixmier, "L'application exponentielles dans les groupes de Lie résolubles" Bull. Soc. Math. France , 85 (1957) pp. 113–121
[Sa] M. Saitô, "Sur certains groupes de Lie résolubles I, II" Sci. Papers Coll. Gen. Educ. Univ. Tokyo , 7 (1957) pp. 1–11; 157–168
How to Cite This Entry:
Lie group, exponential. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_group,_exponential&oldid=31275
This article was adapted from an original article by V.V. Gorbatsevich (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article