Namespaces
Variants
Actions

Difference between revisions of "Lehmer conjecture"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Tex partly done)
(Tex partly done)
Line 9: Line 9:
 
and this observation permits one to generalize Mahler's measure to polynomials in several variables (see [[#References|[a11]]], [[#References|[a13]]]).
 
and this observation permits one to generalize Mahler's measure to polynomials in several variables (see [[#References|[a11]]], [[#References|[a13]]]).
  
A theorem of L. Kronecker implies that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002014.png" /> is an algebraic integer with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002015.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002016.png" /> is either zero or a root of unity. D.H. Lehmer [[#References|[a7]]] asked whether <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002017.png" /> could attain values arbitrarily close to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002018.png" />. This subsequently led to the following formulation of Lehmer's conjecture: There exists a positive constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002019.png" /> such that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002020.png" /> is an algebraic integer, not a root of unity, then
+
A theorem of L. Kronecker implies that if $\alpha$ is an algebraic integer with $M(\alpha\le1$, then $\alpha$ is either zero or a root of unity. D.H. Lehmer [[#References|[a7]]] asked whether $M(\alpha$ could attain values arbitrarily close to $1$. This subsequently led to the following formulation of Lehmer's conjecture: There exists a positive constant $\eta$ such that if $\alpha\ne0$ is an algebraic integer, not a root of unity, then
 +
$$
 +
M(\alpha) \ge 1 + \eta \ .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002021.png" /></td> </tr></table>
+
Lehmer's conjecture is equivalent to the existence of ergodic automorphisms of the infinite-dimensional torus having finite [[entropy]] [[#References|[a8]]] and its truth would imply the following conjecture stated by A. Schinzel and H. Zassenhaus [[#References|[a16]]]: There exists a positive constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002022.png" /> with the property that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002023.png" /> is a non-zero algebraic integer of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002024.png" />, not a root of unity, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002025.png" />, the maximal absolute value of a conjugate of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002026.png" /> is at least
 
 
Lehmer's conjecture is equivalent to the existence of ergodic automorphisms of the infinite-dimensional torus having finite [[Entropy|entropy]] [[#References|[a8]]] and its truth would imply the following conjecture stated by A. Schinzel and H. Zassenhaus [[#References|[a16]]]: There exists a positive constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002022.png" /> with the property that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002023.png" /> is a non-zero algebraic integer of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002024.png" />, not a root of unity, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002025.png" />, the maximal absolute value of a conjugate of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002026.png" /> is at least
 
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002027.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130020/l13002027.png" /></td> </tr></table>
Line 40: Line 41:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.E. Blanksby,  H.L. Montgomery,  "Algebraic integers near the unit circle"  ''Acta Arith.'' , '''18'''  (1971)  pp. 355–369</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Breusch,  "On the distribution of the roots of a polynomial with integral coefficients"  ''Proc. Amer. Math. Soc.'' , '''3'''  (1951)  pp. 939–941</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  D.G. Cantor,  E.G. Straus,  "On a conjecture of D.H. Lehmer"  ''Acta Arith.'' , '''42'''  (1982)  pp. 97–100; 325</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  E. Dobrowolski,  "On a question of Lehmer and the number of irreducible factors of a polynomial"  ''Acta Arith.'' , '''34'''  (1979)  pp. 391–401</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  A. Dubickas,  "On algebraic numbers of small measure"  ''Liet. Mat. Rink.'' , '''35'''  (1995)  pp. 421–431</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  A. Dubickas,  "Algebraic conjugates outside the unit circle" , ''New Trends in Probability and Statistics'' , '''4'''  (1997)  pp. 11–21</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  D.H. Lehmer,  "Factorization of certain cyclotomic functions"  ''Ann. Math.'' , '''34''' :  2  (1933)  pp. 461–479</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  D.A. Lind,  K. Schmidt,  T. Ward,  "Mahler measure and entropy for commuting automorphisms of compact groups"  ''Invent. Math.'' , '''101'''  (1990)  pp. 503–629</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  R. Louboutin,  "Sur la mesure de Mahler d'un nombre algébrique"  ''C.R. Acad. Sci. Paris'' , '''296'''  (1983)  pp. 707–708</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  K. Mahler,  "An application of Jensen's formula to polynomials"  ''Mathematika'' , '''7'''  (1960)  pp. 98–100</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  K. Mahler,  "On some inequalities for polynomials in several variables"  ''J. London Math. Soc.'' , '''37'''  (1962)  pp. 341–344</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  U. Rausch,  "On a theorem of Dobrowolski about the product of conjugate numbers"  ''Colloq. Math.'' , '''50'''  (1985)  pp. 137–142</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  A. Schinzel,  "The Mahler measure of polynomials" , ''Number Theory and its Applications (Ankara, 1996)'' , M. Dekker  (1999)  pp. 171–183</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  C.J. Smyth,  "On the product of the conjugates outside the unit circle of an algebraic integer"  ''Bull. London Math. Soc.'' , '''3'''  (1971)  pp. 169–175</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  C.L. Stewart,  "Algebraic integers whose conjugates lie near the unit circle"  ''Bull. Soc. Math. France'' , '''196'''  (1978)  pp. 169–176</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top">  A. Schinzel,  H. Zassenhaus,  "A refinement of two theorems of Kronecker"  ''Michigan J. Math.'' , '''12'''  (1965)  pp. 81–85</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  P.E. Blanksby,  H.L. Montgomery,  "Algebraic integers near the unit circle"  ''Acta Arith.'' , '''18'''  (1971)  pp. 355–369</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Breusch,  "On the distribution of the roots of a polynomial with integral coefficients"  ''Proc. Amer. Math. Soc.'' , '''3'''  (1951)  pp. 939–941</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  D.G. Cantor,  E.G. Straus,  "On a conjecture of D.H. Lehmer"  ''Acta Arith.'' , '''42'''  (1982)  pp. 97–100; 325</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  E. Dobrowolski,  "On a question of Lehmer and the number of irreducible factors of a polynomial"  ''Acta Arith.'' , '''34'''  (1979)  pp. 391–401</TD></TR>
 +
<TR><TD valign="top">[a5]</TD> <TD valign="top">  A. Dubickas,  "On algebraic numbers of small measure"  ''Liet. Mat. Rink.'' , '''35'''  (1995)  pp. 421–431</TD></TR><
 +
TR><TD valign="top">[a6]</TD> <TD valign="top">  A. Dubickas,  "Algebraic conjugates outside the unit circle" , ''New Trends in Probability and Statistics'' , '''4'''  (1997)  pp. 11–21</TD></TR>
 +
<TR><TD valign="top">[a7]</TD> <TD valign="top">  D.H. Lehmer,  "Factorization of certain cyclotomic functions"  ''Ann. Math.'' , '''34''' :  2  (1933)  pp. 461–479</TD></TR>
 +
<TR><TD valign="top">[a8]</TD> <TD valign="top">  D.A. Lind,  K. Schmidt,  T. Ward,  "Mahler measure and entropy for commuting automorphisms of compact groups"  ''Invent. Math.'' , '''101'''  (1990)  pp. 503–629</TD></TR>
 +
<TR><TD valign="top">[a9]</TD> <TD valign="top">  R. Louboutin,  "Sur la mesure de Mahler d'un nombre algébrique"  ''C.R. Acad. Sci. Paris'' , '''296'''  (1983)  pp. 707–708</TD></TR>
 +
<TR><TD valign="top">[a10]</TD> <TD valign="top">  K. Mahler,  "An application of Jensen's formula to polynomials"  ''Mathematika'' , '''7'''  (1960)  pp. 98–100</TD></TR>
 +
<TR><TD valign="top">[a11]</TD> <TD valign="top">  K. Mahler,  "On some inequalities for polynomials in several variables"  ''J. London Math. Soc.'' , '''37'''  (1962)  pp. 341–344</TD></TR>
 +
<TR><TD valign="top">[a12]</TD> <TD valign="top">  U. Rausch,  "On a theorem of Dobrowolski about the product of conjugate numbers"  ''Colloq. Math.'' , '''50'''  (1985)  pp. 137–142</TD></TR>
 +
<TR><TD valign="top">[a13]</TD> <TD valign="top">  A. Schinzel,  "The Mahler measure of polynomials" , ''Number Theory and its Applications (Ankara, 1996)'' , M. Dekker  (1999)  pp. 171–183</TD></TR>
 +
<TR><TD valign="top">[a14]</TD> <TD valign="top">  C.J. Smyth,  "On the product of the conjugates outside the unit circle of an algebraic integer"  ''Bull. London Math. Soc.'' , '''3'''  (1971)  pp. 169–175</TD></TR>
 +
<TR><TD valign="top">[a15]</TD> <TD valign="top">  C.L. Stewart,  "Algebraic integers whose conjugates lie near the unit circle"  ''Bull. Soc. Math. France'' , '''196'''  (1978)  pp. 169–176</TD></TR>
 +
<TR><TD valign="top">[a16]</TD> <TD valign="top">  A. Schinzel,  H. Zassenhaus,  "A refinement of two theorems of Kronecker"  ''Michigan J. Math.'' , '''12'''  (1965)  pp. 81–85</TD></TR>
 +
</table>
  
 
{{TEX|part}}
 
{{TEX|part}}

Revision as of 16:36, 25 March 2018

A conjecture about the minimal Mahler measure of a non-zero algebraic integer which is not a root of unity. The Mahler measure $M(\alpha)$ of an algebraic number $\alpha$ is defined by $$ M(\alpha) = a_0 \prod_{i=1}^N \max(1,|\alpha_i|) \ , $$ where $a_0$ denotes the leading coefficient and $N$ the degree of the minimal polynomial $f$ (with integral coefficients) of $\alpha$ (cf. also Algebraic number) and $\alpha=\alpha_1,\alpha_2,\ldots,\alpha_N$ are its conjugates. Since $M(\alpha)$ depends only on $f$, it is also denoted by $M(f)$ and called the Mahler measure of $f$. Jensen's formula (cf. also Jensen formula) implies the equality $$ M(f) = \exp\left({ \int_0^1 \log\left\vert{ f\left({ e^{2\pi i t} }\right) }\right\vert d t }\right) $$ and this observation permits one to generalize Mahler's measure to polynomials in several variables (see [a11], [a13]).

A theorem of L. Kronecker implies that if $\alpha$ is an algebraic integer with $M(\alpha\le1$, then $\alpha$ is either zero or a root of unity. D.H. Lehmer [a7] asked whether $M(\alpha$ could attain values arbitrarily close to $1$. This subsequently led to the following formulation of Lehmer's conjecture: There exists a positive constant $\eta$ such that if $\alpha\ne0$ is an algebraic integer, not a root of unity, then $$ M(\alpha) \ge 1 + \eta \ . $$

Lehmer's conjecture is equivalent to the existence of ergodic automorphisms of the infinite-dimensional torus having finite entropy [a8] and its truth would imply the following conjecture stated by A. Schinzel and H. Zassenhaus [a16]: There exists a positive constant with the property that if is a non-zero algebraic integer of degree , not a root of unity, then , the maximal absolute value of a conjugate of is at least

It is known ([a2], [a14]) that Lehmer's conjecture holds for non-reciprocal integers , i.e. algebraic integers whose minimal polynomials do not have as a root. In this case the minimal value for equals and is attained by roots of the polynomial .

In 1971, P.E. Blanksby and H.L. Montgomery [a1] established, for all algebraic integers of degree that are not roots of unity, the inequality

and subsequently E. Dobrowolski [a4] obtained

with , whereas for he got . Subsequently, several authors increased the value of to ([a3], [a12]) and ([a9]). Since for non-reciprocal integers one has , the last result leads to the inequality

but this has been superseded by A. Dubickas [a5], who proved for sufficiently large the inequality

which is the strongest known result toward the Schinzel–Zassenhaus conjecture as of 2000.

The smallest known value of is , realized by the root of and found in [a7].

References

< TR>
[a1] P.E. Blanksby, H.L. Montgomery, "Algebraic integers near the unit circle" Acta Arith. , 18 (1971) pp. 355–369
[a2] K. Breusch, "On the distribution of the roots of a polynomial with integral coefficients" Proc. Amer. Math. Soc. , 3 (1951) pp. 939–941
[a3] D.G. Cantor, E.G. Straus, "On a conjecture of D.H. Lehmer" Acta Arith. , 42 (1982) pp. 97–100; 325
[a4] E. Dobrowolski, "On a question of Lehmer and the number of irreducible factors of a polynomial" Acta Arith. , 34 (1979) pp. 391–401
[a5] A. Dubickas, "On algebraic numbers of small measure" Liet. Mat. Rink. , 35 (1995) pp. 421–431
[a6] A. Dubickas, "Algebraic conjugates outside the unit circle" , New Trends in Probability and Statistics , 4 (1997) pp. 11–21
[a7] D.H. Lehmer, "Factorization of certain cyclotomic functions" Ann. Math. , 34 : 2 (1933) pp. 461–479
[a8] D.A. Lind, K. Schmidt, T. Ward, "Mahler measure and entropy for commuting automorphisms of compact groups" Invent. Math. , 101 (1990) pp. 503–629
[a9] R. Louboutin, "Sur la mesure de Mahler d'un nombre algébrique" C.R. Acad. Sci. Paris , 296 (1983) pp. 707–708
[a10] K. Mahler, "An application of Jensen's formula to polynomials" Mathematika , 7 (1960) pp. 98–100
[a11] K. Mahler, "On some inequalities for polynomials in several variables" J. London Math. Soc. , 37 (1962) pp. 341–344
[a12] U. Rausch, "On a theorem of Dobrowolski about the product of conjugate numbers" Colloq. Math. , 50 (1985) pp. 137–142
[a13] A. Schinzel, "The Mahler measure of polynomials" , Number Theory and its Applications (Ankara, 1996) , M. Dekker (1999) pp. 171–183
[a14] C.J. Smyth, "On the product of the conjugates outside the unit circle of an algebraic integer" Bull. London Math. Soc. , 3 (1971) pp. 169–175
[a15] C.L. Stewart, "Algebraic integers whose conjugates lie near the unit circle" Bull. Soc. Math. France , 196 (1978) pp. 169–176
[a16] A. Schinzel, H. Zassenhaus, "A refinement of two theorems of Kronecker" Michigan J. Math. , 12 (1965) pp. 81–85
How to Cite This Entry:
Lehmer conjecture. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lehmer_conjecture&oldid=43023
This article was adapted from an original article by Władysław Narkiewicz (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article