Namespaces
Variants
Actions

Difference between revisions of "Lagrange stability"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A property of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l0572401.png" /> (a trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l0572402.png" />) of a [[Dynamical system|dynamical system]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l0572403.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l0572404.png" />, cf. [[#References|[2]]]) given on a metric space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l0572405.png" />, requiring that the trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l0572406.png" /> is contained in a pre-compact set (cf. [[Pre-compact space|Pre-compact space]]).
+
<!--
 +
l0572401.png
 +
$#A+1 = 14 n = 0
 +
$#C+1 = 14 : ~/encyclopedia/old_files/data/L057/L.0507240 Lagrange stability
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l0572407.png" />, then Lagrange stability is the same as boundedness of the trajectory. If for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l0572408.png" /> (respectively, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l0572409.png" />) the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l05724010.png" /> is contained in a pre-compact set, then the trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l05724011.png" /> (the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l05724012.png" />) is called positively (respectively, negatively) Lagrange stable. The concept of Lagrange stability was introduced by H. Poincaré in connection with analyzing the results of J.L. Lagrange on the stability of planetary orbits.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Birkhoff's theorem: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l05724013.png" /> is complete, then the closure of a positively or negatively Lagrange-stable trajectory contains at least one compact [[Minimal set|minimal set]]. Every point of a compact minimal set is a [[Recurrent point|recurrent point]].
+
A property of a point  $  x $(
 +
a trajectory  $  f ^ { t } x $)
 +
of a [[Dynamical system|dynamical system]]  $  f ^ { t } $(
 +
or  $  f ( t , \cdot ) $,
 +
cf. [[#References|[2]]]) given on a metric space  $  S $,
 +
requiring that the trajectory  $  f ^ { t } x $
 +
is contained in a pre-compact set (cf. [[Pre-compact space|Pre-compact space]]).
 +
 
 +
If  $  S = \mathbf R  ^ {n} $,
 +
then Lagrange stability is the same as boundedness of the trajectory. If for all  $  t \in \mathbf R  ^ {+} $(
 +
respectively, for all  $  t \in \mathbf R  ^ {-} $)
 +
the point  $  f ^ { t } x $
 +
is contained in a pre-compact set, then the trajectory  $  f ^ { t } x $(
 +
the point  $  x $)
 +
is called positively (respectively, negatively) Lagrange stable. The concept of Lagrange stability was introduced by H. Poincaré in connection with analyzing the results of J.L. Lagrange on the stability of planetary orbits.
 +
 
 +
Birkhoff's theorem: If $  S $
 +
is complete, then the closure of a positively or negatively Lagrange-stable trajectory contains at least one compact [[Minimal set|minimal set]]. Every point of a compact minimal set is a [[Recurrent point|recurrent point]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Poincaré,  "Les méthodes nouvelles de la mécanique céleste" , '''3''' , Blanchard, reprint  (1987)  pp. Chapt. 26</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.V. Nemytskii,  V.V. Stepanov,  "Qualitative theory of differential equations" , Princeton Univ. Press  (1960)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Poincaré,  "Les méthodes nouvelles de la mécanique céleste" , '''3''' , Blanchard, reprint  (1987)  pp. Chapt. 26</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.V. Nemytskii,  V.V. Stepanov,  "Qualitative theory of differential equations" , Princeton Univ. Press  (1960)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
In [[#References|[1]]], Poincaré explicitly introduces the term  "stabilité à la Poisson" , but merely implicitly suggests the notion  "stabilité à la Lagrange"  by mentioning that boundedness of the planetary orbits was proved by Lagrange.
 
In [[#References|[1]]], Poincaré explicitly introduces the term  "stabilité à la Poisson" , but merely implicitly suggests the notion  "stabilité à la Lagrange"  by mentioning that boundedness of the planetary orbits was proved by Lagrange.
  
The above definitions can be given for any dynamical system, not necessarily defined on a metric space. In particular, for the first part of Birkhoff's theorem as formulated above, it is not necessary to require that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057240/l05724014.png" /> is metrizable, let alone complete. Metrizability and completeness are needed to prove that every point of a minimal set is a [[Recurrent point|recurrent point]]. In the general case, every point of a compact minimal set is an almost-periodic point.
+
The above definitions can be given for any dynamical system, not necessarily defined on a metric space. In particular, for the first part of Birkhoff's theorem as formulated above, it is not necessary to require that $  S $
 +
is metrizable, let alone complete. Metrizability and completeness are needed to prove that every point of a minimal set is a [[Recurrent point|recurrent point]]. In the general case, every point of a compact minimal set is an almost-periodic point.

Latest revision as of 22:15, 5 June 2020


A property of a point $ x $( a trajectory $ f ^ { t } x $) of a dynamical system $ f ^ { t } $( or $ f ( t , \cdot ) $, cf. [2]) given on a metric space $ S $, requiring that the trajectory $ f ^ { t } x $ is contained in a pre-compact set (cf. Pre-compact space).

If $ S = \mathbf R ^ {n} $, then Lagrange stability is the same as boundedness of the trajectory. If for all $ t \in \mathbf R ^ {+} $( respectively, for all $ t \in \mathbf R ^ {-} $) the point $ f ^ { t } x $ is contained in a pre-compact set, then the trajectory $ f ^ { t } x $( the point $ x $) is called positively (respectively, negatively) Lagrange stable. The concept of Lagrange stability was introduced by H. Poincaré in connection with analyzing the results of J.L. Lagrange on the stability of planetary orbits.

Birkhoff's theorem: If $ S $ is complete, then the closure of a positively or negatively Lagrange-stable trajectory contains at least one compact minimal set. Every point of a compact minimal set is a recurrent point.

References

[1] H. Poincaré, "Les méthodes nouvelles de la mécanique céleste" , 3 , Blanchard, reprint (1987) pp. Chapt. 26
[2] V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations" , Princeton Univ. Press (1960) (Translated from Russian)

Comments

In [1], Poincaré explicitly introduces the term "stabilité à la Poisson" , but merely implicitly suggests the notion "stabilité à la Lagrange" by mentioning that boundedness of the planetary orbits was proved by Lagrange.

The above definitions can be given for any dynamical system, not necessarily defined on a metric space. In particular, for the first part of Birkhoff's theorem as formulated above, it is not necessary to require that $ S $ is metrizable, let alone complete. Metrizability and completeness are needed to prove that every point of a minimal set is a recurrent point. In the general case, every point of a compact minimal set is an almost-periodic point.

How to Cite This Entry:
Lagrange stability. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lagrange_stability&oldid=47561
This article was adapted from an original article by V.M. Millionshchikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article