Kummer criterion

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]

A general convergence criterion for series with positive terms, proposed by E. Kummer. Let \begin{equation}\label{e:series} \sum_n a_n \end{equation} be a series of positive numbers and $\{c_n\}$ a sequence of positive numbers. If there are $\delta >0$ and $N$ such that \[ K_n := c_n \frac{a_n}{a_{n+1}} - c_{n+1} \geq \delta \qquad \forall n\geq N\, , \] then \eqref{e:series} converges. If the series $\sum_n (c_n)^{-1}$ diverges and there is $N$ such that $K_n \leq 0$ for all $n\geq N$, then \eqref{e:series} diverges.

An obvious corollary is that, when the limit \[ K := \lim_{n\to \infty} K_n \] exists we have:

  • if $K>0$ \eqref{e:series} converges
  • if $K<0$ and $\sum_n (c_n)^{-1}$ diverges, then \eqref{e:series} diverges.


[Fi] G.M. Fichtenholz, "Differential und Integralrechnung" , 1 , Deutsch. Verlag Wissenschaft. (1964)
[Ra] E.D. Rainville, "Infinite series" , Macmillan (1967)
How to Cite This Entry:
Kummer criterion. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by E.G. Sobolevskaya (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article