Namespaces
Variants
Actions

Difference between revisions of "Involution"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
i0525101.png
 +
$#A+1 = 34 n = 0
 +
$#C+1 = 34 : ~/encyclopedia/old_files/data/I052/I.0502510 Involution
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
An [[Endomorphism|endomorphism]] of order two, that is, a mapping of an object onto itself whose square is the identity morphism (see also [[Category with involution|Category with involution]]). A periodic mapping, that is, a morphism some non-zero power of which is the identity morphism, is also sometimes called an involution. The minimum of such powers is called the period of the involution.
 
An [[Endomorphism|endomorphism]] of order two, that is, a mapping of an object onto itself whose square is the identity morphism (see also [[Category with involution|Category with involution]]). A periodic mapping, that is, a morphism some non-zero power of which is the identity morphism, is also sometimes called an involution. The minimum of such powers is called the period of the involution.
  
Often, by the involutions of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i0525101.png" /> one means the elements of order two in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i0525102.png" />.
+
Often, by the involutions of a group $  G $
 +
one means the elements of order two in $  G $.
  
An involution in an algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i0525103.png" /> over the field of real or complex numbers is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i0525104.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i0525105.png" /> onto itself satisfying the following involution axioms: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i0525106.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i0525107.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i0525108.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i0525109.png" />; 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251010.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251011.png" /> and for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251012.png" /> in the corresponding field; and 4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251013.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251014.png" />. An algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251015.png" /> over the complex field endowed with an involution is called a symmetric algebra or [[Involution algebra|involution algebra]].
+
An involution in an algebra $  E $
 +
over the field of real or complex numbers is a mapping $  x \rightarrow x  ^ {*} $
 +
of $  E $
 +
onto itself satisfying the following involution axioms: 1) $  x  ^ {**} = x $
 +
for all $  x \in E $;  
 +
2) $  ( x + y )  ^ {*} = x  ^ {*} + y  ^ {*} $
 +
for all $  x , y \in E $;  
 +
3) $  ( \lambda x )  ^ {*} = \overline \lambda \; x  ^ {*} $
 +
for all $  x \in E $
 +
and for all $  \lambda $
 +
in the corresponding field; and 4) $  ( x y )  ^ {*} = y  ^ {*} x  ^ {*} $
 +
for all $  x , y \in E $.  
 +
An algebra $  E $
 +
over the complex field endowed with an involution is called a symmetric algebra or [[Involution algebra|involution algebra]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.E. Conner,  E.E. Floyd,  "Differentiable periodic maps" , Springer  (1964)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.E. Conner,  E.E. Floyd,  "Differentiable periodic maps" , Springer  (1964)</TD></TR></table>
  
An involution in projective geometry is a projective transformation whose square is the identity transformation. A non-identity involution of the real projective line has just two fixed points (a hyperbolic involution) or has no fixed points (an elliptic involution). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251017.png" /> are the fixed points of a hyperbolic involution, then the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251019.png" /> corresponding to them harmonically divide the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251020.png" />. Every involution on the projective plane is a hyperbolic [[Homology|homology]].
+
An involution in projective geometry is a projective transformation whose square is the identity transformation. A non-identity involution of the real projective line has just two fixed points (a hyperbolic involution) or has no fixed points (an elliptic involution). If $  A $
 +
and $  B $
 +
are the fixed points of a hyperbolic involution, then the points $  M $
 +
and $  M _ {1} $
 +
corresponding to them harmonically divide the pair $  A , B $.  
 +
Every involution on the projective plane is a hyperbolic [[Homology|homology]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.V. Efimov,  "Höhere Geometrie" , Deutsch. Verlag Wissenschaft.  (1960)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.V. Efimov,  "Höhere Geometrie" , Deutsch. Verlag Wissenschaft.  (1960)  (Translated from Russian)</TD></TR></table>
  
An involution of an algebraic variety is an automorphism of the variety of order two. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251021.png" /> is a non-singular projective algebraic variety over an algebraically closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251023.png" /> is an involution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251024.png" />, then the quotient variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251025.png" /> with respect to the action of the cyclic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251026.png" /> is a projective variety, called the quotient under the involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251027.png" />. The set of fixed points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251028.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251029.png" /> forms a non-singular subvariety of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251030.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251031.png" /> has codimension 1 at each point, the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251032.png" /> is a non-singular variety. The numerical invariants of a non-singular model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251033.png" /> of the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052510/i05251034.png" /> can be calculated by means of the [[Lefschetz formula|Lefschetz formula]].
+
An involution of an algebraic variety is an automorphism of the variety of order two. If $  X $
 +
is a non-singular projective algebraic variety over an algebraically closed field $  k $
 +
and $  g $
 +
is an involution of $  X $,  
 +
then the quotient variety $  X / \{ g \} $
 +
with respect to the action of the cyclic group $  \{ g \} $
 +
is a projective variety, called the quotient under the involution $  g $.  
 +
The set of fixed points $  F ( g) $
 +
of $  g $
 +
forms a non-singular subvariety of $  X $.  
 +
If $  F ( g) $
 +
has codimension 1 at each point, the image of $  g $
 +
is a non-singular variety. The numerical invariants of a non-singular model $  \overline{X}\; $
 +
of the variety $  X / \{ g \} $
 +
can be calculated by means of the [[Lefschetz formula|Lefschetz formula]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.F. Atiyah,  I.M. Singer,  "The index of elliptic operators III"  ''Ann. of Math. (2)'' , '''87''' :  1  (1968)  pp. 546–604</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.V. Dolgachev,  V.A. Iskovskikh,  "Geometry of algebraic varieties"  ''J. Soviet Math.'' , '''5''' :  6  (1976)  pp. 803–864  ''Itogi Nauk. Algebra Topol. Geom.'' , '''12'''  (1975)  pp. 77–170</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L. Godeaux,  "Les involutions cycliques appartenant à une surface algébrique" , Hermann  (1963)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.F. Atiyah,  I.M. Singer,  "The index of elliptic operators III"  ''Ann. of Math. (2)'' , '''87''' :  1  (1968)  pp. 546–604</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.V. Dolgachev,  V.A. Iskovskikh,  "Geometry of algebraic varieties"  ''J. Soviet Math.'' , '''5''' :  6  (1976)  pp. 803–864  ''Itogi Nauk. Algebra Topol. Geom.'' , '''12'''  (1975)  pp. 77–170</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L. Godeaux,  "Les involutions cycliques appartenant à une surface algébrique" , Hermann  (1963)</TD></TR></table>

Latest revision as of 22:13, 5 June 2020


An endomorphism of order two, that is, a mapping of an object onto itself whose square is the identity morphism (see also Category with involution). A periodic mapping, that is, a morphism some non-zero power of which is the identity morphism, is also sometimes called an involution. The minimum of such powers is called the period of the involution.

Often, by the involutions of a group $ G $ one means the elements of order two in $ G $.

An involution in an algebra $ E $ over the field of real or complex numbers is a mapping $ x \rightarrow x ^ {*} $ of $ E $ onto itself satisfying the following involution axioms: 1) $ x ^ {**} = x $ for all $ x \in E $; 2) $ ( x + y ) ^ {*} = x ^ {*} + y ^ {*} $ for all $ x , y \in E $; 3) $ ( \lambda x ) ^ {*} = \overline \lambda \; x ^ {*} $ for all $ x \in E $ and for all $ \lambda $ in the corresponding field; and 4) $ ( x y ) ^ {*} = y ^ {*} x ^ {*} $ for all $ x , y \in E $. An algebra $ E $ over the complex field endowed with an involution is called a symmetric algebra or involution algebra.

References

[1] P.E. Conner, E.E. Floyd, "Differentiable periodic maps" , Springer (1964)

An involution in projective geometry is a projective transformation whose square is the identity transformation. A non-identity involution of the real projective line has just two fixed points (a hyperbolic involution) or has no fixed points (an elliptic involution). If $ A $ and $ B $ are the fixed points of a hyperbolic involution, then the points $ M $ and $ M _ {1} $ corresponding to them harmonically divide the pair $ A , B $. Every involution on the projective plane is a hyperbolic homology.

References

[1] N.V. Efimov, "Höhere Geometrie" , Deutsch. Verlag Wissenschaft. (1960) (Translated from Russian)

An involution of an algebraic variety is an automorphism of the variety of order two. If $ X $ is a non-singular projective algebraic variety over an algebraically closed field $ k $ and $ g $ is an involution of $ X $, then the quotient variety $ X / \{ g \} $ with respect to the action of the cyclic group $ \{ g \} $ is a projective variety, called the quotient under the involution $ g $. The set of fixed points $ F ( g) $ of $ g $ forms a non-singular subvariety of $ X $. If $ F ( g) $ has codimension 1 at each point, the image of $ g $ is a non-singular variety. The numerical invariants of a non-singular model $ \overline{X}\; $ of the variety $ X / \{ g \} $ can be calculated by means of the Lefschetz formula.

References

[1] M.F. Atiyah, I.M. Singer, "The index of elliptic operators III" Ann. of Math. (2) , 87 : 1 (1968) pp. 546–604
[2] I.V. Dolgachev, V.A. Iskovskikh, "Geometry of algebraic varieties" J. Soviet Math. , 5 : 6 (1976) pp. 803–864 Itogi Nauk. Algebra Topol. Geom. , 12 (1975) pp. 77–170
[3] L. Godeaux, "Les involutions cycliques appartenant à une surface algébrique" , Hermann (1963)
How to Cite This Entry:
Involution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Involution&oldid=47428