Namespaces
Variants
Actions

Interval order

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 06A [MSN][ZBL]

interval ordering, interval partially ordered set, interval poset

A partial order on the set $S$ of closed intervals of the real line $\mathbb{R}$, defined by $$ I_1 \le I_2 \Leftrightarrow x \le y\ \text{in}\ \mathbb{R}\ \text{for all}\ x\in I_1,\,y \in I_2\ . $$

Such a partially ordered set (more precisely, one isomorphic to it) is called an interval order.

A linear order, also called a totally ordered set, is an interval order (but an interval order need not be total, of course).

There is the following forbidden sub-poset characterization of interval orders (the Fishburn theorem, [a1]): A poset $P$ is an interval order if and only if $P$ does not contain the disjoint sum $\mathbf{2} + \mathbf{2}$ as a sub-poset (cf. also Disjoint sum of partially ordered sets). Here, $\mathbf{2}$ is the totally ordered set $\{1,2\}$, $1<2$, so that $\mathbf{2} + \mathbf{2} = \{a_1,a_2,b_1,b_2\}$ with $a_1 < a_2$, $b_1 < b_2$ and no other comparable pairs of distinct elements.

A poset is called a semi-order if there is a function $f : P \rightarrow \mathbf{R}$ such that $x < y$ in $P$ if and only if $f(y) > f(x)+1$. Clearly, a semi-order is isomorphic to a unit interval order: an interval order with all intervals of length $1$. Here too, a forbidden sub-poset characterization holds (the Scott–Suppes theorem, [a2]): A poset $P$ is a semi-order if and only if it does not contain either $\mathbf{2} + \mathbf{2}$ or $\mathbf{3} + \mathbf{1}$ as a sub-poset.

References

[a1] P.C. Fishburn, "Intransitive indifference with unequal indifference intervals" J. Math. Psychol. , 7 (1970) pp. 144–149 Zbl 0191.31501
[a2] D. Scott, P. Suppes, "Foundational aspects of the theories of measurement" J. Symbolic Logic , 23 (1958) pp. 113–128
[a3] W.T. Trotter, "Partially ordered sets" R.L. Graham (ed.) M. Grötschel (ed.) L. Lovász (ed.) , Handbook of Combinatorics , I , North-Holland (1995) pp. 433–480
[b1] Martin Charles Golumbic, Ann N. Trenk, "Tolerance Graphs", Cambridge Studies in Advanced Mathematics 89 Cambridge University Press (2004) ISBN 0-521-82758-2
How to Cite This Entry:
Interval order. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Interval_order&oldid=54265
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article