Namespaces
Variants
Actions

Integral logarithm

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


The special function defined, for positive real $ x $, $ x \neq 1 $, by

$$ \mathop{\rm li} ( x) = \ \int\limits _ { 0 } ^ { x } \frac{dt}{ \mathop{\rm ln} t } ; $$

for $ x > 1 $ the integrand has at $ t = 1 $ an infinite discontinuity and the integral logarithm is taken to be the principal value

$$ \mathop{\rm li} ( x) = \ \lim\limits _ {\epsilon \downarrow 0 } \ \left \{ \int\limits _ { 0 } ^ { {1 } - \epsilon } \frac{dt}{ \mathop{\rm ln} t } + \int\limits _ {1 + \epsilon } ^ { x } \frac{dt}{ \mathop{\rm ln} t } \right \} . $$

The graph of the integral logarithm is given in the article Integral exponential function. For $ x $ small:

$$ \mathop{\rm li} ( x) \approx \frac{x}{ \mathop{\rm ln} ( 1 / x ) } . $$

The integral logarithm has for positive real $ x $ the series representation

$$ \mathop{\rm li} ( x) = c + \mathop{\rm ln} | \mathop{\rm ln} x | + \sum _ { k= 1} ^ \infty \frac{( \mathop{\rm ln} x ) ^ {k} }{k ! k } ,\ \ k > 0 ,\ \ x \neq 1 , $$

where $ c = 0.5772 \dots $ is the Euler constant. As a function of the complex variable $ z $,

$$ \mathop{\rm li} ( z) = c + \mathop{\rm ln} ( - \mathop{\rm ln} z ) + \sum _ { k=1 } ^ \infty \frac{( \mathop{\rm ln} z ) ^ {k} }{k ! k } $$

is a single-valued analytic function in the complex $ z $- plane with slits along the real axis from $ - \infty $ to 0 and from 1 to $ + \infty $( the imaginary part of the logarithms is taken within the limits $ - \pi $ and $ \pi $). The behaviour of $ \mathop{\rm li} x $ along $ ( 1 , + \infty ) $ is described by

$$ \lim\limits _ {\eta \downarrow 0 } \mathop{\rm li} ( x \pm i \eta ) = \mathop{\rm li} x \mp \pi i ,\ \ x > 1 . $$

The integral logarithm is related to the integral exponential function $ \mathop{\rm Ei} ( x) $ by

$$ \mathop{\rm li} ( x) = \ \mathop{\rm Ei} ( \mathop{\rm ln} x ) ,\ \ x < 1 ; \ \ \mathop{\rm Ei} ( x) = \ \mathop{\rm li} ( e ^ {x} ) ,\ \ x < 0 . $$

For real $ x > 0 $ one sometimes uses the notation

$$ \mathop{\rm Li} ( x) = \ \left \{ \begin{array}{ll} \mathop{\rm li} ( x) = \mathop{\rm Ei} ( \mathop{\rm ln} x ) &\textrm{ for } 0 < x < 1 , \\ \mathop{\rm li} ( x) + \pi i = \mathop{\rm Ei} ^ {*} ( \mathop{\rm ln} x ) &\textrm{ for } x > 1 . \\ \end{array} \right .$$

For references, see Integral cosine.

Comments

The function $ \mathop{\rm li} $ is better known as the logarithmic integral. It can, of course, be defined by the integral (as above) for $ z \in \mathbf C \setminus \{ {x \in \mathbf R } : {x \leq 0 \textrm{ or } x \geq 1 } \} $.

The series representation for positive $ x $, $ x \neq 1 $, is then also said to define the modified logarithmic integral, and is the boundary value of $ \mathop{\rm li} ( x + i \eta ) \pm \pi i $, $ x > 1 $, $ \eta \rightarrow 0 $. For real $ x > 1 $ the value $ \mathop{\rm li} ( x) $ is a good approximation of $ \pi ( x) $, the number of primes smaller than $ x $ (see de la Vallée-Poussin theorem; Distribution of prime numbers; Prime number).

How to Cite This Entry:
Integral logarithm. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_logarithm&oldid=51645
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article