Namespaces
Variants
Actions

Difference between revisions of "Integral logarithm"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
The special function defined, for positive real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i0515201.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i0515202.png" />, by
+
<!--
 +
i0515201.png
 +
$#A+1 = 36 n = 0
 +
$#C+1 = 36 : ~/encyclopedia/old_files/data/I051/I.0501520 Integral logarithm
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i0515203.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i0515204.png" /> the integrand has at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i0515205.png" /> an infinite discontinuity and the integral logarithm is taken to be the principal value
+
The special function defined, for positive real  $  x $,
 +
$  x \neq 1 $,
 +
by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i0515206.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm li} ( x)  = \
 +
\int\limits _ { 0 } ^ { x }
  
The graph of the integral logarithm is given in the article [[Integral exponential function|Integral exponential function]]. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i0515207.png" /> small:
+
\frac{dt}{ \mathop{\rm ln}  t }
 +
;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i0515208.png" /></td> </tr></table>
+
for  $  x > 1 $
 +
the integrand has at  $  t = 1 $
 +
an infinite discontinuity and the integral logarithm is taken to be the principal value
  
The integral logarithm has for positive real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i0515209.png" /> the series representation
+
$$
 +
\mathop{\rm li} ( x)  = \
 +
\lim\limits _ {\epsilon \downarrow 0 } \
 +
\left \{
 +
\int\limits _ { 0 } ^ { {1 }  - \epsilon }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152010.png" /></td> </tr></table>
+
\frac{dt}{ \mathop{\rm ln}  t }
 +
+
 +
\int\limits _ {1 + \epsilon } ^ { x }
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152011.png" /> is the [[Euler constant|Euler constant]]. As a function of the complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152012.png" />,
+
\frac{dt}{ \mathop{\rm ln}  t }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152013.png" /></td> </tr></table>
+
\right \} .
 +
$$
  
is a single-valued analytic function in the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152014.png" />-plane with slits along the real axis from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152015.png" /> to 0 and from 1 to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152016.png" /> (the imaginary part of the logarithms is taken within the limits <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152018.png" />). The behaviour of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152019.png" /> along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152020.png" /> is described by
+
The graph of the integral logarithm is given in the article [[Integral exponential function|Integral exponential function]]. For  $  x $
 +
small:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152021.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm li} ( x)  \approx 
 +
\frac{x}{ \mathop{\rm ln} ( 1 / x ) }
 +
.
 +
$$
  
The integral logarithm is related to the [[Integral exponential function|integral exponential function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152022.png" /> by
+
The integral logarithm has for positive real  $  x $
 +
the series representation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152023.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm li} ( x)  = c
 +
+  \mathop{\rm ln}  |  \mathop{\rm ln}  x | +
 +
\sum _ { k= } 1 ^  \infty 
  
For real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152024.png" /> one sometimes uses the notation
+
\frac{(  \mathop{\rm ln}  x )  ^ {k} }{k ! k }
 +
,\ \
 +
k > 0 ,\ \
 +
x \neq 1 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152025.png" /></td> </tr></table>
+
where  $  c = 0.5772 \dots $
 +
is the [[Euler constant|Euler constant]]. As a function of the complex variable  $  z $,
  
For references, see [[Integral cosine|Integral cosine]].
+
$$
 +
\mathop{\rm li} ( z)  =  c +
 +
\mathop{\rm ln} ( -  \mathop{\rm ln}  z ) +
 +
\sum _ { k= } 1 ^  \infty 
 +
 
 +
\frac{(  \mathop{\rm ln}  z )  ^ {k} }{k ! k }
 +
 
 +
$$
 +
 
 +
is a single-valued analytic function in the complex  $  z $-
 +
plane with slits along the real axis from  $  - \infty $
 +
to 0 and from 1 to  $  + \infty $(
 +
the imaginary part of the logarithms is taken within the limits  $  - \pi $
 +
and  $  \pi $).
 +
The behaviour of  $  \mathop{\rm li}  x $
 +
along  $  ( 1 , + \infty ) $
 +
is described by
 +
 
 +
$$
 +
\lim\limits _ {\eta \downarrow 0 }  \mathop{\rm li} ( x \pm  i \eta )
 +
=  \mathop{\rm li}  x \mps \pi i ,\ \
 +
x > 1 .
 +
$$
 +
 
 +
The integral logarithm is related to the [[Integral exponential function|integral exponential function]] $  \mathop{\rm Ei} ( x) $
 +
by
 +
 
 +
$$
 +
\mathop{\rm li} ( x)  = \
 +
\mathop{\rm Ei} (  \mathop{\rm ln}  x ) ,\ \
 +
x < 1 ; \ \
 +
\mathop{\rm Ei} ( x)  = \
 +
\mathop{\rm li} ( e  ^ {x} ) ,\ \
 +
x < 0 .
 +
$$
 +
 
 +
For real  $  x > 0 $
 +
one sometimes uses the notation
 +
 
 +
$$
 +
\mathop{\rm Li} ( x)  = \
 +
\left \{
 +
\begin{array}{ll}
 +
\mathop{\rm li} ( x)  =  \mathop{\rm Ei} (  \mathop{\rm ln}  x )  &\textrm{ for }  0 < x < 1 ,  \\
 +
\mathop{\rm li} ( x) + \pi i  =  \mathop{\rm Ei}  ^ {*} (  \mathop{\rm ln}  x )  &\textrm{ for }  x > 1 . \\
 +
\end{array}
  
 +
\right .$$
  
 +
For references, see [[Integral cosine|Integral cosine]].
  
 
====Comments====
 
====Comments====
The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152026.png" /> is better known as the logarithmic integral. It can, of course, be defined by the integral (as above) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152027.png" />.
+
The function $  \mathop{\rm li} $
 +
is better known as the logarithmic integral. It can, of course, be defined by the integral (as above) for $  z \in \mathbf C \setminus  \{ {x \in \mathbf R } : {x \leq  0 \textrm{ or }  x \geq  1 } \} $.
  
The series representation for positive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152029.png" />, is then also said to define the modified logarithmic integral, and is the boundary value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152032.png" />. For real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152033.png" /> the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152034.png" /> is a good approximation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152035.png" />, the number of primes smaller than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051520/i05152036.png" /> (see [[De la Vallée-Poussin theorem|de la Vallée-Poussin theorem]]; [[Distribution of prime numbers|Distribution of prime numbers]]; [[Prime number|Prime number]]).
+
The series representation for positive $  x $,  
 +
$  x \neq 1 $,  
 +
is then also said to define the modified logarithmic integral, and is the boundary value of $  \mathop{\rm li} ( x + i \eta ) \pm  \pi i $,  
 +
$  x > 1 $,  
 +
$  \eta \rightarrow 0 $.  
 +
For real $  x > 1 $
 +
the value $  \mathop{\rm li} ( x) $
 +
is a good approximation of $  \pi ( x) $,  
 +
the number of primes smaller than $  x $(
 +
see [[De la Vallée-Poussin theorem|de la Vallée-Poussin theorem]]; [[Distribution of prime numbers|Distribution of prime numbers]]; [[Prime number|Prime number]]).

Revision as of 22:12, 5 June 2020


The special function defined, for positive real $ x $, $ x \neq 1 $, by

$$ \mathop{\rm li} ( x) = \ \int\limits _ { 0 } ^ { x } \frac{dt}{ \mathop{\rm ln} t } ; $$

for $ x > 1 $ the integrand has at $ t = 1 $ an infinite discontinuity and the integral logarithm is taken to be the principal value

$$ \mathop{\rm li} ( x) = \ \lim\limits _ {\epsilon \downarrow 0 } \ \left \{ \int\limits _ { 0 } ^ { {1 } - \epsilon } \frac{dt}{ \mathop{\rm ln} t } + \int\limits _ {1 + \epsilon } ^ { x } \frac{dt}{ \mathop{\rm ln} t } \right \} . $$

The graph of the integral logarithm is given in the article Integral exponential function. For $ x $ small:

$$ \mathop{\rm li} ( x) \approx \frac{x}{ \mathop{\rm ln} ( 1 / x ) } . $$

The integral logarithm has for positive real $ x $ the series representation

$$ \mathop{\rm li} ( x) = c + \mathop{\rm ln} | \mathop{\rm ln} x | + \sum _ { k= } 1 ^ \infty \frac{( \mathop{\rm ln} x ) ^ {k} }{k ! k } ,\ \ k > 0 ,\ \ x \neq 1 , $$

where $ c = 0.5772 \dots $ is the Euler constant. As a function of the complex variable $ z $,

$$ \mathop{\rm li} ( z) = c + \mathop{\rm ln} ( - \mathop{\rm ln} z ) + \sum _ { k= } 1 ^ \infty \frac{( \mathop{\rm ln} z ) ^ {k} }{k ! k } $$

is a single-valued analytic function in the complex $ z $- plane with slits along the real axis from $ - \infty $ to 0 and from 1 to $ + \infty $( the imaginary part of the logarithms is taken within the limits $ - \pi $ and $ \pi $). The behaviour of $ \mathop{\rm li} x $ along $ ( 1 , + \infty ) $ is described by

$$ \lim\limits _ {\eta \downarrow 0 } \mathop{\rm li} ( x \pm i \eta ) = \mathop{\rm li} x \mps \pi i ,\ \ x > 1 . $$

The integral logarithm is related to the integral exponential function $ \mathop{\rm Ei} ( x) $ by

$$ \mathop{\rm li} ( x) = \ \mathop{\rm Ei} ( \mathop{\rm ln} x ) ,\ \ x < 1 ; \ \ \mathop{\rm Ei} ( x) = \ \mathop{\rm li} ( e ^ {x} ) ,\ \ x < 0 . $$

For real $ x > 0 $ one sometimes uses the notation

$$ \mathop{\rm Li} ( x) = \ \left \{ \begin{array}{ll} \mathop{\rm li} ( x) = \mathop{\rm Ei} ( \mathop{\rm ln} x ) &\textrm{ for } 0 < x < 1 , \\ \mathop{\rm li} ( x) + \pi i = \mathop{\rm Ei} ^ {*} ( \mathop{\rm ln} x ) &\textrm{ for } x > 1 . \\ \end{array} \right .$$

For references, see Integral cosine.

Comments

The function $ \mathop{\rm li} $ is better known as the logarithmic integral. It can, of course, be defined by the integral (as above) for $ z \in \mathbf C \setminus \{ {x \in \mathbf R } : {x \leq 0 \textrm{ or } x \geq 1 } \} $.

The series representation for positive $ x $, $ x \neq 1 $, is then also said to define the modified logarithmic integral, and is the boundary value of $ \mathop{\rm li} ( x + i \eta ) \pm \pi i $, $ x > 1 $, $ \eta \rightarrow 0 $. For real $ x > 1 $ the value $ \mathop{\rm li} ( x) $ is a good approximation of $ \pi ( x) $, the number of primes smaller than $ x $( see de la Vallée-Poussin theorem; Distribution of prime numbers; Prime number).

How to Cite This Entry:
Integral logarithm. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_logarithm&oldid=16849
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article