Namespaces
Variants
Actions

Integral hyperbolic sine

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The special function defined, for real $x$, by

$$\operatorname{Shi}(x)=\int\limits_0^x\frac{\sinh t}{t}\,dt=i\operatorname{Si}(ix),$$

where $\operatorname{Si}(x)$ is the integral sine. The integral hyperbolic sine can be represented by the series

$$\operatorname{Shi}(x)=x+\frac{x^3}{3!3}+\frac{x^5}{5!5}+\dotsb.$$

It is related to the integral hyperbolic cosine $\operatorname{Chi}(x)$ by

$$\operatorname{Chi}(x)+\operatorname{Shi}(x)=\operatorname{Li}(e^x),$$

where $\operatorname{Li}$ is the integral logarithm.

Sometimes it is denoted by $\operatorname{shi}(x)$.

For references see Integral cosine.


Comments

This function, which is seldom used because of its relation with the sine integral, is also called the hyperbolic sine integral. It can, of course, be defined (as above) for $z\in\mathbf C$.

How to Cite This Entry:
Integral hyperbolic sine. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_hyperbolic_sine&oldid=43638
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article