Namespaces
Variants
Actions

Difference between revisions of "Homology sequence"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An [[Exact sequence|exact sequence]], infinite on both sides, of homology groups of three complexes, connected by a short exact sequence. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047850/h0478501.png" /> be an exact sequence of chain complexes in an Abelian category. Then there are morphisms
+
<!--
 +
h0478501.png
 +
$#A+1 = 9 n = 0
 +
$#C+1 = 9 : ~/encyclopedia/old_files/data/H047/H.0407850 Homology sequence
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047850/h0478502.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
defined for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047850/h0478503.png" />. They are called connecting (or boundary) morphisms. Their definition in the category of modules is especially simple: For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047850/h0478504.png" /> a pre-image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047850/h0478505.png" /> is chosen; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047850/h0478506.png" /> will then be the image of an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047850/h0478507.png" /> whose homology class is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047850/h0478508.png" />. The sequence of homology groups
+
An [[Exact sequence|exact sequence]], infinite on both sides, of homology groups of three complexes, connected by a short exact sequence. Let  $  0 \rightarrow K _ {\mathbf . }  \rightarrow L _ {\mathbf . }  \rightarrow M _ {\mathbf . }  \rightarrow 0 $
 +
be an exact sequence of chain complexes in an Abelian category. Then there are morphisms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047850/h0478509.png" /></td> </tr></table>
+
$$
 +
\partial  _ {n} : H _ {n} ( M _ {\mathbf . }  )  \rightarrow  H _ {n - 1 }  ( K _ {\mathbf . }  )
 +
$$
 +
 
 +
defined for all  $  n $.
 +
They are called connecting (or boundary) morphisms. Their definition in the category of modules is especially simple: For  $  h \in H _ {n} ( M _ {\mathbf . }  ) $
 +
a pre-image  $  x \in L _ {n} $
 +
is chosen; $  d x $
 +
will then be the image of an element  $  z \in Z _ {n-} 1 ( K _ {\mathbf . }  ) $
 +
whose homology class is  $  \partial  _ {n} ( h) $.
 +
The sequence of homology groups
 +
 
 +
$$
 +
\dots \rightarrow ^ { {\partial  _ { n} + 1 } } \
 +
H _ {n} ( K _ {\mathbf . }  )  \rightarrow  H _ {n} ( L _ {\mathbf . }  )  \rightarrow \
 +
H _ {n} ( M _ {\mathbf . }  )  \rightarrow ^ { {\partial  _ n } } \
 +
H _ {n - 1 }  ( K _ {\mathbf . }  )  \rightarrow \dots ,
 +
$$
  
 
constructed with the aid of the connecting morphisms, is exact; it is called the homology sequence. Thus, the homology groups form a [[Homology functor|homology functor]] on the category of complexes.
 
constructed with the aid of the connecting morphisms, is exact; it is called the homology sequence. Thus, the homology groups form a [[Homology functor|homology functor]] on the category of complexes.

Latest revision as of 22:11, 5 June 2020


An exact sequence, infinite on both sides, of homology groups of three complexes, connected by a short exact sequence. Let $ 0 \rightarrow K _ {\mathbf . } \rightarrow L _ {\mathbf . } \rightarrow M _ {\mathbf . } \rightarrow 0 $ be an exact sequence of chain complexes in an Abelian category. Then there are morphisms

$$ \partial _ {n} : H _ {n} ( M _ {\mathbf . } ) \rightarrow H _ {n - 1 } ( K _ {\mathbf . } ) $$

defined for all $ n $. They are called connecting (or boundary) morphisms. Their definition in the category of modules is especially simple: For $ h \in H _ {n} ( M _ {\mathbf . } ) $ a pre-image $ x \in L _ {n} $ is chosen; $ d x $ will then be the image of an element $ z \in Z _ {n-} 1 ( K _ {\mathbf . } ) $ whose homology class is $ \partial _ {n} ( h) $. The sequence of homology groups

$$ \dots \rightarrow ^ { {\partial _ { n} + 1 } } \ H _ {n} ( K _ {\mathbf . } ) \rightarrow H _ {n} ( L _ {\mathbf . } ) \rightarrow \ H _ {n} ( M _ {\mathbf . } ) \rightarrow ^ { {\partial _ n } } \ H _ {n - 1 } ( K _ {\mathbf . } ) \rightarrow \dots , $$

constructed with the aid of the connecting morphisms, is exact; it is called the homology sequence. Thus, the homology groups form a homology functor on the category of complexes.

Cohomology sequences are defined in a dual manner.

References

[1] H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)
How to Cite This Entry:
Homology sequence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homology_sequence&oldid=15902
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article