Namespaces
Variants
Actions

Difference between revisions of "Homology functor"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing superscript)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A functor on an [[Abelian category|Abelian category]] that defines a certain homological structure on it. A system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h0477801.png" /> of covariant additive functors from an Abelian category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h0477802.png" /> into an Abelian category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h0477803.png" /> is called a homology functor if the following axioms are satisfied.
+
<!--
 +
h0477801.png
 +
$#A+1 = 21 n = 0
 +
$#C+1 = 21 : ~/encyclopedia/old_files/data/H047/H.0407780 Homology functor
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A functor on an [[Abelian category|Abelian category]] that defines a certain homological structure on it. A system $  H = {( H _ {i} ) } _ {i \in \mathbf Z }  $
 +
of covariant additive functors from an Abelian category $  {\mathcal A} $
 +
into an Abelian category $  {\mathcal A} _ {1} $
 +
is called a homology functor if the following axioms are satisfied.
  
 
1) For each exact sequence
 
1) For each exact sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h0477804.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  A  ^  \prime  \rightarrow  A  \rightarrow  A  ^ {\prime\prime}  \rightarrow  0
 +
$$
  
and each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h0477805.png" />, in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h0477806.png" /> a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h0477807.png" /> is given, which is known as the connecting or boundary morphism.
+
and each $  i $,  
 +
in $  {\mathcal A} $
 +
a morphism $  \partial  _ {i} : H _ {i+ 1} ( A  ^ {\prime\prime} ) \rightarrow H _ {i} ( A  ^  \prime  ) $
 +
is given, which is known as the connecting or boundary morphism.
  
 
2) The sequence
 
2) The sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h0477808.png" /></td> </tr></table>
+
$$
 +
\dots \rightarrow  H _ { i + 1 } ( A  ^  \prime  )  \rightarrow  H _ {i + 1 }  ( A)  \rightarrow \
 +
H _ {i + 1 }  ( A  ^ {\prime\prime} )  \rightarrow ^ { {\partial  _ i } }
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h0477809.png" /></td> </tr></table>
+
$$
 +
\rightarrow ^ { {\partial  _ i} }  H _ {i} ( A  ^  \prime  )  \rightarrow \dots ,
 +
$$
  
 
called the homology sequence, is exact.
 
called the homology sequence, is exact.
  
Thus, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h04778010.png" /> be the category of chain complexes of Abelian groups, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h04778011.png" /> be the category of Abelian groups. The functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h04778012.png" /> which assign to a complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h04778013.png" /> the corresponding homology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h04778014.png" /> define a homology functor.
+
Thus, let $  {\mathcal A} = K(  \mathop{\rm Ab} ) $
 +
be the category of chain complexes of Abelian groups, and let $  \mathop{\rm Ab} $
 +
be the category of Abelian groups. The functors $  H _ {i} : K(  \mathop{\rm Ab} ) \rightarrow  \mathop{\rm Ab} $
 +
which assign to a complex $  K _ {\mathbf . }  $
 +
the corresponding homology groups $  H _ {i} ( K _ {\mathbf . }  ) $
 +
define a homology functor.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h04778015.png" /> be an additive covariant functor for which the left derived functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h04778016.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h04778017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h04778018.png" />) are defined (cf. [[Derived functor|Derived functor]]). The system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h04778019.png" /> will then define a homology functor from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h04778020.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047780/h04778021.png" />.
+
Let $  F: {\mathcal A} \mapsto {\mathcal A} _ {1} $
 +
be an additive covariant functor for which the left derived functors $  R _ {i} F $ ($  R _ {i} F = 0 $,  
 +
$  i < 0 $)  
 +
are defined (cf. [[Derived functor|Derived functor]]). The system $  ( R _ {i} F  ) _ {i \in \mathbf Z }  $
 +
will then define a homology functor from $  {\mathcal A} $
 +
into $  {\mathcal A} _ {1} $.
  
 
Another example of a homology functor is the [[Hyperhomology functor|hyperhomology functor]].
 
Another example of a homology functor is the [[Hyperhomology functor|hyperhomology functor]].

Latest revision as of 07:11, 10 May 2022


A functor on an Abelian category that defines a certain homological structure on it. A system $ H = {( H _ {i} ) } _ {i \in \mathbf Z } $ of covariant additive functors from an Abelian category $ {\mathcal A} $ into an Abelian category $ {\mathcal A} _ {1} $ is called a homology functor if the following axioms are satisfied.

1) For each exact sequence

$$ 0 \rightarrow A ^ \prime \rightarrow A \rightarrow A ^ {\prime\prime} \rightarrow 0 $$

and each $ i $, in $ {\mathcal A} $ a morphism $ \partial _ {i} : H _ {i+ 1} ( A ^ {\prime\prime} ) \rightarrow H _ {i} ( A ^ \prime ) $ is given, which is known as the connecting or boundary morphism.

2) The sequence

$$ \dots \rightarrow H _ { i + 1 } ( A ^ \prime ) \rightarrow H _ {i + 1 } ( A) \rightarrow \ H _ {i + 1 } ( A ^ {\prime\prime} ) \rightarrow ^ { {\partial _ i } } $$

$$ \rightarrow ^ { {\partial _ i} } H _ {i} ( A ^ \prime ) \rightarrow \dots , $$

called the homology sequence, is exact.

Thus, let $ {\mathcal A} = K( \mathop{\rm Ab} ) $ be the category of chain complexes of Abelian groups, and let $ \mathop{\rm Ab} $ be the category of Abelian groups. The functors $ H _ {i} : K( \mathop{\rm Ab} ) \rightarrow \mathop{\rm Ab} $ which assign to a complex $ K _ {\mathbf . } $ the corresponding homology groups $ H _ {i} ( K _ {\mathbf . } ) $ define a homology functor.

Let $ F: {\mathcal A} \mapsto {\mathcal A} _ {1} $ be an additive covariant functor for which the left derived functors $ R _ {i} F $ ($ R _ {i} F = 0 $, $ i < 0 $) are defined (cf. Derived functor). The system $ ( R _ {i} F ) _ {i \in \mathbf Z } $ will then define a homology functor from $ {\mathcal A} $ into $ {\mathcal A} _ {1} $.

Another example of a homology functor is the hyperhomology functor.

A cohomology functor is defined in a dual manner.

References

[1] A. Grothendieck, "Sur quelques points d'algèbre homologique" Tohoku Math. J. , 9 (1957) pp. 119–221
How to Cite This Entry:
Homology functor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homology_functor&oldid=13881
This article was adapted from an original article by I.V. Dolgachev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article