Namespaces
Variants
Actions

Difference between revisions of "Group completion theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
g1102601.png
 +
$#A+1 = 6 n = 3
 +
$#C+1 = 6 : ~/encyclopedia/old_files/data/G110/G.1100260 Group completion theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''in algebraic topology''
 
''in algebraic topology''
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102601.png" /> be a topological [[Monoid|monoid]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102602.png" /> its classifying space. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102603.png" /> be the canonical mapping. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102604.png" /> induces an isomorphism
+
Let $  M $
 +
be a topological [[Monoid|monoid]] and $  BM $
 +
its classifying space. Let $  M \rightarrow \Omega BM $
 +
be the canonical mapping. Then $  H _ {*} ( M ) \rightarrow H _ {*} ( \Omega BM ) $
 +
induces an isomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102605.png" /></td> </tr></table>
+
$$
 +
H _ {*} ( M ) [ \pi _ {0} ( M ) ^ {- 1 } ] \rightarrow H _ {*} ( \Omega BM ) .
 +
$$
  
This theorem plays an important role in [[K-theory|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102606.png" />-theory]].
+
This theorem plays an important role in [[K-theory| $  K $-
 +
theory]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. McDuff, G. Segal, "Homology fibrations and the "group completion" theorem" ''Invent. Math.'' , '''31''' (1976) pp. 279–287</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.F. Jardine, "The homotopical foundations of algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102607.png" />-theory" , ''Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102608.png" />-Theory and Algebraic Number Theory'' , ''Contemp. Math.'' , '''83''' , Amer. Math. Soc. (1989) pp. 57–82 {{MR|991976}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.P. May, "Classifying spaces and fibrations" , ''Memoirs'' , '''155''' , Amer. Math. Soc. (1975) {{MR|0370579}} {{ZBL|0321.55033}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M.B. Barrat, S.B. Priddy, "On the homology of non-connected monoids and their associated groups" ''Comm. Math. Helvetici'' , '''47''' (1972) pp. 1–14 {{MR|314940}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> I. Moerdijk, "Bisimplicial sets and the group-completion theorem" , ''Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102609.png" />-Theory: Connections with Geometry and Topology'' , Kluwer Acad. Publ. (1989) pp. 225–240 {{MR|1045852}} {{ZBL|0708.18008}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. McDuff, G. Segal, "Homology fibrations and the "group completion" theorem" ''Invent. Math.'' , '''31''' (1976) pp. 279–287</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.F. Jardine, "The homotopical foundations of algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102607.png" />-theory" , ''Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102608.png" />-Theory and Algebraic Number Theory'' , ''Contemp. Math.'' , '''83''' , Amer. Math. Soc. (1989) pp. 57–82 {{MR|991976}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.P. May, "Classifying spaces and fibrations" , ''Memoirs'' , '''155''' , Amer. Math. Soc. (1975) {{MR|0370579}} {{ZBL|0321.55033}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M.B. Barrat, S.B. Priddy, "On the homology of non-connected monoids and their associated groups" ''Comm. Math. Helvetici'' , '''47''' (1972) pp. 1–14 {{MR|314940}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> I. Moerdijk, "Bisimplicial sets and the group-completion theorem" , ''Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102609.png" />-Theory: Connections with Geometry and Topology'' , Kluwer Acad. Publ. (1989) pp. 225–240 {{MR|1045852}} {{ZBL|0708.18008}} </TD></TR></table>

Latest revision as of 19:42, 5 June 2020


in algebraic topology

Let $ M $ be a topological monoid and $ BM $ its classifying space. Let $ M \rightarrow \Omega BM $ be the canonical mapping. Then $ H _ {*} ( M ) \rightarrow H _ {*} ( \Omega BM ) $ induces an isomorphism

$$ H _ {*} ( M ) [ \pi _ {0} ( M ) ^ {- 1 } ] \rightarrow H _ {*} ( \Omega BM ) . $$

This theorem plays an important role in $ K $- theory.

References

[a1] D. McDuff, G. Segal, "Homology fibrations and the "group completion" theorem" Invent. Math. , 31 (1976) pp. 279–287
[a2] J.F. Jardine, "The homotopical foundations of algebraic -theory" , Algebraic -Theory and Algebraic Number Theory , Contemp. Math. , 83 , Amer. Math. Soc. (1989) pp. 57–82 MR991976
[a3] J.P. May, "Classifying spaces and fibrations" , Memoirs , 155 , Amer. Math. Soc. (1975) MR0370579 Zbl 0321.55033
[a4] M.B. Barrat, S.B. Priddy, "On the homology of non-connected monoids and their associated groups" Comm. Math. Helvetici , 47 (1972) pp. 1–14 MR314940
[a5] I. Moerdijk, "Bisimplicial sets and the group-completion theorem" , Algebraic -Theory: Connections with Geometry and Topology , Kluwer Acad. Publ. (1989) pp. 225–240 MR1045852 Zbl 0708.18008
How to Cite This Entry:
Group completion theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Group_completion_theorem&oldid=24078
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article