Namespaces
Variants
Actions

Difference between revisions of "Grötzsch principle"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Grotzsch principle to Grötzsch principle over redirect: accented title)
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
g0451901.png
 +
$#A+1 = 25 n = 0
 +
$#C+1 = 25 : ~/encyclopedia/old_files/data/G045/G.0405190 Gr\AGotzsch principle
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A principle in the theory of [[Conformal mapping|conformal mapping]], proposed in 1928 by H. Grötzsch
 
A principle in the theory of [[Conformal mapping|conformal mapping]], proposed in 1928 by H. Grötzsch
  
 
and used in proving inequalities for the lengths of curves of certain families and the area of the surface they bound. Grötzsch subsequently developed numerous applications of the strip method (cf. [[Strip method (analytic functions)|Strip method (analytic functions)]]) in the theory of univalent functions defined in finitely-connected or infinitely-connected domains.
 
and used in proving inequalities for the lengths of curves of certain families and the area of the surface they bound. Grötzsch subsequently developed numerous applications of the strip method (cf. [[Strip method (analytic functions)|Strip method (analytic functions)]]) in the theory of univalent functions defined in finitely-connected or infinitely-connected domains.
  
Grötzsch' principle can be explained as follows. Let an annulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g0451901.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g0451902.png" />, contain a finite number of pairwise-disjoint simply-connected domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g0451903.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g0451904.png" />, with Jordan boundaries containing arcs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g0451905.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g0451906.png" /> of the respective circles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g0451907.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g0451908.png" /> which do not degenerate into points (the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g0451909.png" /> form strips which connect the boundary components of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519010.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519011.png" /> is mapped into some rectangle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519012.png" /> so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519014.png" /> pass to sides of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519015.png" />, respectively <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519016.png" />, then
+
Grötzsch' principle can be explained as follows. Let an annulus $  K ( r, R) = \{ {z } : {r < | z | < R } \} , $
 +
0 < r < R < \infty $,  
 +
contain a finite number of pairwise-disjoint simply-connected domains $  B _ {k} , $
 +
$  k = 1 \dots n $,  
 +
with Jordan boundaries containing arcs $  \gamma _ {k} $
 +
and $  \Gamma _ {k} $
 +
of the respective circles $  | z | = r $,  
 +
$  | z | = R $
 +
which do not degenerate into points (the $  B _ {k} $
 +
form strips which connect the boundary components of $  K ( r, R) $).  
 +
If $  B _ {k} $
 +
is mapped into some rectangle $  \{ {w } : {0 < \mathop{\rm Re}  w < a _ {k} ,  0<  \mathop{\rm Im}  w < b _ {k} } \} $
 +
so that $  \gamma _ {k} $
 +
and $  \Gamma _ {k} $
 +
pass to sides of length $  a _ {k} $,  
 +
respectively $  b _ {k} $,  
 +
then
 +
 
 +
$$
 +
\sum _ {k = 1 } ^ { n }
 +
 
 +
\frac{a _ {k} }{b _ {k} }
 +
  \leq  \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519017.png" /></td> </tr></table>
+
\frac{2 \pi }{(  \mathop{\rm ln}  R - \mathop{\rm ln}  r) }
 +
,
 +
$$
  
and equality is attained only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519020.png" /> are constants, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519021.png" />, and the union <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519022.png" /> covers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519023.png" /> except for the intervals of the rays <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045190/g04519025.png" /> which belong to it.
+
and equality is attained only if $  B _ {k} = \{ {z } : {r < | z | < R, \alpha _ {k} <  \mathop{\rm arg}  z < \beta _ {k} } \} $,
 +
$  \alpha _ {k} $,  
 +
$  \beta _ {k} $
 +
are constants, $  k = 1 \dots n $,  
 +
and the union $  \cup _ {k = 1 }  ^ {n} B _ {k} $
 +
covers $  K ( r, R) $
 +
except for the intervals of the rays $  \mathop{\rm arg}  z = \alpha _ {k} $,  
 +
$  \mathop{\rm arg}  z = \beta _ {k} $
 +
which belong to it.
  
 
Grötzsch' principle and the strip method are constituent parts of the method of the extremal metric (cf. [[Extremal metric, method of the|Extremal metric, method of the]]) and are used not only in conformal mapping, but also in mapping of a more general nature such as [[Quasi-conformal mapping|quasi-conformal mapping]].
 
Grötzsch' principle and the strip method are constituent parts of the method of the extremal metric (cf. [[Extremal metric, method of the|Extremal metric, method of the]]) and are used not only in conformal mapping, but also in mapping of a more general nature such as [[Quasi-conformal mapping|quasi-conformal mapping]].
Line 13: Line 57:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  H. Grötzsch,  "Ueber einige Extremalprobleme der konformen Abbildung I"  ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl.'' , '''80'''  (1928)  pp. 367–376</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  H. Grötzsch,  "Ueber einige Extremalprobleme der konformen Abbildung II"  ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl.'' , '''80'''  (1928)  pp. 497–502</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top">  H. Grötzsch,  "Ueber die Verzerrung bei schlichter konformer Abbildung mehrfach zusammenhängender Bereiche II"  ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl.'' , '''81'''  (1929)  pp. 217–221</TD></TR><TR><TD valign="top">[1d]</TD> <TD valign="top">  H. Grötzsch,  ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl.'' , '''82'''  (1930)  pp. 69–80</TD></TR><TR><TD valign="top">[1e]</TD> <TD valign="top">  H. Grötzsch,  "Zum Parallelschlitztheorem der konformen Abbildung schlichter unendlich-vielfach zusammenhängender Bereiche"  ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl.'' , '''83'''  (1931)  pp. 185–200</TD></TR><TR><TD valign="top">[1f]</TD> <TD valign="top">  H. Grötzsch,  "Ueber möglichts konformen Abbildungen von schlichter Bereiche"  ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl.'' , '''84'''  (1932)  pp. 114–120</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.A. Jenkins,  "Univalent functions and conformal mappings" , Springer  (1958)</TD></TR></table>
 
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  H. Grötzsch,  "Ueber einige Extremalprobleme der konformen Abbildung I"  ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl.'' , '''80'''  (1928)  pp. 367–376</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  H. Grötzsch,  "Ueber einige Extremalprobleme der konformen Abbildung II"  ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl.'' , '''80'''  (1928)  pp. 497–502</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top">  H. Grötzsch,  "Ueber die Verzerrung bei schlichter konformer Abbildung mehrfach zusammenhängender Bereiche II"  ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl.'' , '''81'''  (1929)  pp. 217–221</TD></TR><TR><TD valign="top">[1d]</TD> <TD valign="top">  H. Grötzsch,  ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl.'' , '''82'''  (1930)  pp. 69–80</TD></TR><TR><TD valign="top">[1e]</TD> <TD valign="top">  H. Grötzsch,  "Zum Parallelschlitztheorem der konformen Abbildung schlichter unendlich-vielfach zusammenhängender Bereiche"  ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl.'' , '''83'''  (1931)  pp. 185–200</TD></TR><TR><TD valign="top">[1f]</TD> <TD valign="top">  H. Grötzsch,  "Ueber möglichts konformen Abbildungen von schlichter Bereiche"  ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl.'' , '''84'''  (1932)  pp. 114–120</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.A. Jenkins,  "Univalent functions and conformal mappings" , Springer  (1958)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
Cf. also [[Grötzsch theorems|Grötzsch theorems]]; [[Distortion theorems|Distortion theorems]].
 
Cf. also [[Grötzsch theorems|Grötzsch theorems]]; [[Distortion theorems|Distortion theorems]].

Latest revision as of 19:42, 5 June 2020


A principle in the theory of conformal mapping, proposed in 1928 by H. Grötzsch

and used in proving inequalities for the lengths of curves of certain families and the area of the surface they bound. Grötzsch subsequently developed numerous applications of the strip method (cf. Strip method (analytic functions)) in the theory of univalent functions defined in finitely-connected or infinitely-connected domains.

Grötzsch' principle can be explained as follows. Let an annulus $ K ( r, R) = \{ {z } : {r < | z | < R } \} , $ $ 0 < r < R < \infty $, contain a finite number of pairwise-disjoint simply-connected domains $ B _ {k} , $ $ k = 1 \dots n $, with Jordan boundaries containing arcs $ \gamma _ {k} $ and $ \Gamma _ {k} $ of the respective circles $ | z | = r $, $ | z | = R $ which do not degenerate into points (the $ B _ {k} $ form strips which connect the boundary components of $ K ( r, R) $). If $ B _ {k} $ is mapped into some rectangle $ \{ {w } : {0 < \mathop{\rm Re} w < a _ {k} , 0< \mathop{\rm Im} w < b _ {k} } \} $ so that $ \gamma _ {k} $ and $ \Gamma _ {k} $ pass to sides of length $ a _ {k} $, respectively $ b _ {k} $, then

$$ \sum _ {k = 1 } ^ { n } \frac{a _ {k} }{b _ {k} } \leq \ \frac{2 \pi }{( \mathop{\rm ln} R - \mathop{\rm ln} r) } , $$

and equality is attained only if $ B _ {k} = \{ {z } : {r < | z | < R, \alpha _ {k} < \mathop{\rm arg} z < \beta _ {k} } \} $, $ \alpha _ {k} $, $ \beta _ {k} $ are constants, $ k = 1 \dots n $, and the union $ \cup _ {k = 1 } ^ {n} B _ {k} $ covers $ K ( r, R) $ except for the intervals of the rays $ \mathop{\rm arg} z = \alpha _ {k} $, $ \mathop{\rm arg} z = \beta _ {k} $ which belong to it.

Grötzsch' principle and the strip method are constituent parts of the method of the extremal metric (cf. Extremal metric, method of the) and are used not only in conformal mapping, but also in mapping of a more general nature such as quasi-conformal mapping.

References

[1a] H. Grötzsch, "Ueber einige Extremalprobleme der konformen Abbildung I" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl. , 80 (1928) pp. 367–376
[1b] H. Grötzsch, "Ueber einige Extremalprobleme der konformen Abbildung II" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl. , 80 (1928) pp. 497–502
[1c] H. Grötzsch, "Ueber die Verzerrung bei schlichter konformer Abbildung mehrfach zusammenhängender Bereiche II" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl. , 81 (1929) pp. 217–221
[1d] H. Grötzsch, Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl. , 82 (1930) pp. 69–80
[1e] H. Grötzsch, "Zum Parallelschlitztheorem der konformen Abbildung schlichter unendlich-vielfach zusammenhängender Bereiche" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl. , 83 (1931) pp. 185–200
[1f] H. Grötzsch, "Ueber möglichts konformen Abbildungen von schlichter Bereiche" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl. , 84 (1932) pp. 114–120
[2] G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian)
[3] J.A. Jenkins, "Univalent functions and conformal mappings" , Springer (1958)

Comments

Cf. also Grötzsch theorems; Distortion theorems.

How to Cite This Entry:
Grötzsch principle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gr%C3%B6tzsch_principle&oldid=23320
This article was adapted from an original article by I.A. Aleksandrov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article