Namespaces
Variants
Actions

Difference between revisions of "Goursat problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
g0446501.png
 +
$#A+1 = 56 n = 0
 +
$#C+1 = 56 : ~/encyclopedia/old_files/data/G044/G.0404650 Goursat problem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
The Goursat problem concerns a [[Hyperbolic partial differential equation|hyperbolic partial differential equation]], or a second-order hyperbolic system, in two independent variables with given values on two characteristic curves emanating from the same point.
 
The Goursat problem concerns a [[Hyperbolic partial differential equation|hyperbolic partial differential equation]], or a second-order hyperbolic system, in two independent variables with given values on two characteristic curves emanating from the same point.
  
 
For the hyperbolic equation
 
For the hyperbolic equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g0446501.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
u _ {xy}  = F ( x, y, u , p, q),\ \
 +
= u _ {x} ,\ \
 +
= u _ {y} ,
 +
$$
  
given, for example, in the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g0446502.png" />, Goursat's problem is posed as follows: To find a solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g0446503.png" /> of (1) that is regular in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g0446504.png" /> and continuous in the closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g0446505.png" /> from the boundary conditions
+
given, for example, in the domain $  \Omega = \{ {( x, y) } : {0 < x < y < 1 } \} $,  
 +
Goursat's problem is posed as follows: To find a solution $  u ( x, y) $
 +
of (1) that is regular in $  \Omega $
 +
and continuous in the closure $  \overline \Omega \; $
 +
from the boundary conditions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g0446506.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
u ( 0, t)  = \phi ( t),\ \
 +
u ( t, 1)  = \psi ( t),\ \
 +
\phi ( 1)  = \psi ( 0),\ \
 +
0 \leq  t \leq  1,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g0446507.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g0446508.png" /> are given continuously-differentiable functions. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g0446509.png" /> is continuous for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465010.png" /> and any system of real values of the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465011.png" /> and if it has derivatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465014.png" /> the absolute value of which under these conditions is smaller than a certain number, then a unique and stable solution of the problem (1), (2) exists in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465015.png" />.
+
where $  \phi $
 +
and $  \psi $
 +
are given continuously-differentiable functions. If $  F $
 +
is continuous for all $  ( x, y) \in \overline \Omega \; $
 +
and any system of real values of the variables $  u , p, q $
 +
and if it has derivatives $  F _ {u} $,  
 +
$  F _ {p} $
 +
and $  F _ {q} $
 +
the absolute value of which under these conditions is smaller than a certain number, then a unique and stable solution of the problem (1), (2) exists in $  \Omega $.
  
 
In the study of the linear case of Goursat's problem,
 
In the study of the linear case of Goursat's problem,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
Lu  \equiv  u _ {xy} + au _ {x} + bu _ {y} + cu  = f ,
 +
$$
  
a fundamental role is played by the [[Riemann function|Riemann function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465017.png" />, which is uniquely defined as the solution of the equation
+
a fundamental role is played by the [[Riemann function|Riemann function]] $  R ( x, y;  \xi , \eta ) $,
 +
which is uniquely defined as the solution of the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465018.png" /></td> </tr></table>
+
$$
 +
R _ {xy} - ( aR) _ {x} - ( bR) _ {y} + cR  = 0
 +
$$
  
that, on the characteristics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465020.png" />, satisfies the condition
+
that, on the characteristics $  x = \xi $
 +
and $  y = \eta $,  
 +
satisfies the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465021.png" /></td> </tr></table>
+
$$
 +
R ( \xi , y; \xi , \eta )  = \
 +
\mathop{\rm exp}  \int\limits _  \eta  ^ { y }  a ( \xi , t)  dt,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465022.png" /></td> </tr></table>
+
$$
 +
R ( x, \eta ; \xi , \eta )  =   \mathop{\rm exp}  \int\limits _  \xi  ^ { x }  b ( t, \eta )  dt,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465023.png" /> is an arbitrary point in the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465024.png" /> in which equation (3) is defined. If the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465027.png" /> are continuous, then the Riemann function exists and is, with respect to the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465029.png" />, the solution of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465030.png" />.
+
where $  ( \xi , \eta ) $
 +
is an arbitrary point in the domain $  \Omega $
 +
in which equation (3) is defined. If the functions $  a _ {x} $,  
 +
$  b _ {y} $
 +
and $  c $
 +
are continuous, then the Riemann function exists and is, with respect to the variables $  \xi $
 +
and $  \eta $,  
 +
the solution of the equation $  LR = 0 $.
  
The solution of Goursat's problem (2) for equation (3) is given by the so-called Riemann formula. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465031.png" />, it has the form:
+
The solution of Goursat's problem (2) for equation (3) is given by the so-called Riemann formula. If $  \phi = \psi \equiv 0 $,  
 +
it has the form:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465032.png" /></td> </tr></table>
+
$$
 +
u ( x, y)  = \
 +
\int\limits _ { 0 } ^ { x }  d \xi  \int\limits _ { 1 } ^ { y }
 +
R ( \xi , \eta ; x, y) f ( \xi , \eta )  d \eta .
 +
$$
  
It follows from Riemann's formula that the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465033.png" /> of the solution of Goursat's problem at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465034.png" /> depends only on the value of the given functions in the characteristic quadrilateral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465036.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465037.png" />, this value depends only on the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465039.png" /> in the intervals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465041.png" />, respectively, while if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465042.png" />, the function has the form
+
It follows from Riemann's formula that the value $  u ( x _ {0} , y _ {0} ) $
 +
of the solution of Goursat's problem at a point $  ( x _ {0} , y _ {0} ) \in \Omega $
 +
depends only on the value of the given functions in the characteristic quadrilateral $  0 \leq  x \leq  x _ {0} $,  
 +
$  0 \leq  y \leq  y _ {0} $.  
 +
If $  f \equiv 0 $,  
 +
this value depends only on the values of $  \psi ( x) $
 +
and $  \phi ( y) $
 +
in the intervals $  0 \leq  x \leq  x _ {0} $
 +
and $  0 \leq  y \leq  y _ {0} $,  
 +
respectively, while if $  a = b = c = f \equiv 0 $,  
 +
the function has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465043.png" /></td> </tr></table>
+
$$
 +
u ( x _ {0} , y _ {0} )  = \
 +
\phi ( y _ {0} ) + \psi ( x _ {0} ) - \phi ( 0).
 +
$$
  
The method of obtaining explicit formulas for the solution of Goursat's problem using the Riemann function is known as the [[Riemann method|Riemann method]]. The method has been extended to a fairly wide class of hyperbolic systems of orders one and two — in particular, to systems of the form (3) where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465046.png" /> are quadratic symmetric matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465047.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465049.png" /> are vectors with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465050.png" /> components.
+
The method of obtaining explicit formulas for the solution of Goursat's problem using the Riemann function is known as the [[Riemann method|Riemann method]]. The method has been extended to a fairly wide class of hyperbolic systems of orders one and two — in particular, to systems of the form (3) where $  a $,  
 +
$  b $
 +
and $  c $
 +
are quadratic symmetric matrices of order $  n $,  
 +
while $  f $
 +
and $  u $
 +
are vectors with $  n $
 +
components.
  
A direct generalization of Goursat's problem is the Darboux–Picard problem: To find the solution of a hyperbolic equation, or a second-order hyperbolic system, in two independent variables from its given values on two smooth monotone curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465052.png" />, issuing from the same point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465053.png" /> and located in the characteristic angle with apex at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465054.png" />. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465056.png" /> may partly or wholly coincide with the sides of this angle. This problem has been studied for equations of the form (1).
+
A direct generalization of Goursat's problem is the Darboux–Picard problem: To find the solution of a hyperbolic equation, or a second-order hyperbolic system, in two independent variables from its given values on two smooth monotone curves $  \gamma $
 +
and $  \delta $,  
 +
issuing from the same point $  A $
 +
and located in the characteristic angle with apex at $  A $.  
 +
In particular, $  \gamma $
 +
and $  \delta $
 +
may partly or wholly coincide with the sides of this angle. This problem has been studied for equations of the form (1).
  
 
Goursat's problem is sometimes referred to as the Darboux problem. The Goursat problem for hyperbolic equations of order two in several independent variables is often understood to be the characteristic problem, viz. to find its solution from given values on the characteristic conoid (cf. [[Differential equation, partial, data on characteristics|Differential equation, partial, data on characteristics]]).
 
Goursat's problem is sometimes referred to as the Darboux problem. The Goursat problem for hyperbolic equations of order two in several independent variables is often understood to be the characteristic problem, viz. to find its solution from given values on the characteristic conoid (cf. [[Differential equation, partial, data on characteristics|Differential equation, partial, data on characteristics]]).

Latest revision as of 19:42, 5 June 2020


The Goursat problem concerns a hyperbolic partial differential equation, or a second-order hyperbolic system, in two independent variables with given values on two characteristic curves emanating from the same point.

For the hyperbolic equation

$$ \tag{1 } u _ {xy} = F ( x, y, u , p, q),\ \ p = u _ {x} ,\ \ q = u _ {y} , $$

given, for example, in the domain $ \Omega = \{ {( x, y) } : {0 < x < y < 1 } \} $, Goursat's problem is posed as follows: To find a solution $ u ( x, y) $ of (1) that is regular in $ \Omega $ and continuous in the closure $ \overline \Omega \; $ from the boundary conditions

$$ \tag{2 } u ( 0, t) = \phi ( t),\ \ u ( t, 1) = \psi ( t),\ \ \phi ( 1) = \psi ( 0),\ \ 0 \leq t \leq 1, $$

where $ \phi $ and $ \psi $ are given continuously-differentiable functions. If $ F $ is continuous for all $ ( x, y) \in \overline \Omega \; $ and any system of real values of the variables $ u , p, q $ and if it has derivatives $ F _ {u} $, $ F _ {p} $ and $ F _ {q} $ the absolute value of which under these conditions is smaller than a certain number, then a unique and stable solution of the problem (1), (2) exists in $ \Omega $.

In the study of the linear case of Goursat's problem,

$$ \tag{3 } Lu \equiv u _ {xy} + au _ {x} + bu _ {y} + cu = f , $$

a fundamental role is played by the Riemann function $ R ( x, y; \xi , \eta ) $, which is uniquely defined as the solution of the equation

$$ R _ {xy} - ( aR) _ {x} - ( bR) _ {y} + cR = 0 $$

that, on the characteristics $ x = \xi $ and $ y = \eta $, satisfies the condition

$$ R ( \xi , y; \xi , \eta ) = \ \mathop{\rm exp} \int\limits _ \eta ^ { y } a ( \xi , t) dt, $$

$$ R ( x, \eta ; \xi , \eta ) = \mathop{\rm exp} \int\limits _ \xi ^ { x } b ( t, \eta ) dt, $$

where $ ( \xi , \eta ) $ is an arbitrary point in the domain $ \Omega $ in which equation (3) is defined. If the functions $ a _ {x} $, $ b _ {y} $ and $ c $ are continuous, then the Riemann function exists and is, with respect to the variables $ \xi $ and $ \eta $, the solution of the equation $ LR = 0 $.

The solution of Goursat's problem (2) for equation (3) is given by the so-called Riemann formula. If $ \phi = \psi \equiv 0 $, it has the form:

$$ u ( x, y) = \ \int\limits _ { 0 } ^ { x } d \xi \int\limits _ { 1 } ^ { y } R ( \xi , \eta ; x, y) f ( \xi , \eta ) d \eta . $$

It follows from Riemann's formula that the value $ u ( x _ {0} , y _ {0} ) $ of the solution of Goursat's problem at a point $ ( x _ {0} , y _ {0} ) \in \Omega $ depends only on the value of the given functions in the characteristic quadrilateral $ 0 \leq x \leq x _ {0} $, $ 0 \leq y \leq y _ {0} $. If $ f \equiv 0 $, this value depends only on the values of $ \psi ( x) $ and $ \phi ( y) $ in the intervals $ 0 \leq x \leq x _ {0} $ and $ 0 \leq y \leq y _ {0} $, respectively, while if $ a = b = c = f \equiv 0 $, the function has the form

$$ u ( x _ {0} , y _ {0} ) = \ \phi ( y _ {0} ) + \psi ( x _ {0} ) - \phi ( 0). $$

The method of obtaining explicit formulas for the solution of Goursat's problem using the Riemann function is known as the Riemann method. The method has been extended to a fairly wide class of hyperbolic systems of orders one and two — in particular, to systems of the form (3) where $ a $, $ b $ and $ c $ are quadratic symmetric matrices of order $ n $, while $ f $ and $ u $ are vectors with $ n $ components.

A direct generalization of Goursat's problem is the Darboux–Picard problem: To find the solution of a hyperbolic equation, or a second-order hyperbolic system, in two independent variables from its given values on two smooth monotone curves $ \gamma $ and $ \delta $, issuing from the same point $ A $ and located in the characteristic angle with apex at $ A $. In particular, $ \gamma $ and $ \delta $ may partly or wholly coincide with the sides of this angle. This problem has been studied for equations of the form (1).

Goursat's problem is sometimes referred to as the Darboux problem. The Goursat problem for hyperbolic equations of order two in several independent variables is often understood to be the characteristic problem, viz. to find its solution from given values on the characteristic conoid (cf. Differential equation, partial, data on characteristics).

The problem is named after E. Goursat, who studied it in detail.

References

[1] E. Goursat, "Cours d'analyse mathématique" , 3 , Gauthier-Villars (1923) pp. Part 1
[2] A.V. Bitsadse, "Equations of mixed type" , Pergamon (1964) (Translated from Russian)
[3] R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German)
[4] F.G. Tricomi, "Integral equations" , Interscience (1957)
How to Cite This Entry:
Goursat problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Goursat_problem&oldid=11567
This article was adapted from an original article by A.M. Nakhushev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article