Namespaces
Variants
Actions

Difference between revisions of "Fourier integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The non-discrete analogue of a [[Fourier series|Fourier series]]. The representation of a function given on a finite interval of the real axis by a Fourier series is very important. An analogous role is played by the representation of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f0410501.png" /> given on the whole axis by a Fourier integral:
+
<!--
 +
f0410501.png
 +
$#A+1 = 53 n = 0
 +
$#C+1 = 53 : ~/encyclopedia/old_files/data/F041/F.0401050 Fourier integral
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f0410502.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
The non-discrete analogue of a [[Fourier series|Fourier series]]. The representation of a function given on a finite interval of the real axis by a Fourier series is very important. An analogous role is played by the representation of a function  $  f $
 +
given on the whole axis by a Fourier integral:
 +
 
 +
$$ \tag{1 }
 +
f ( x)  = \
 +
\int\limits _ { 0 } ^  \infty 
 +
[ A ( \lambda )  \cos  \lambda x +
 +
B ( \lambda ) \sin  \lambda x] \
 +
d \lambda ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f0410503.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
A ( \lambda )  = {
 +
\frac{1} \pi
 +
}
 +
\int\limits _ {- \infty } ^ { {+ }  \infty }
 +
f ( \xi )  \cos  \lambda \xi \
 +
d \xi ,
 +
$$
 +
 
 +
$$
 +
B ( \lambda )  = {
 +
\frac{1} \pi
 +
} \int\limits _ {- \infty } ^ { {+ }
 +
\infty } f ( \xi ) \sin  \lambda \xi  d \xi .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f0410504.png" /></td> </tr></table>
+
The representation (1) can be constructed formally by assuming the existence of the described integrals. It is valid, for example, for a smooth function  $  f $
 +
of compact support. There are a great number of tests guaranteeing equation (1) in some sense or other. The substitution of (2) into (1) gives the so-called Fourier integral formula
  
The representation (1) can be constructed formally by assuming the existence of the described integrals. It is valid, for example, for a smooth function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f0410505.png" /> of compact support. There are a great number of tests guaranteeing equation (1) in some sense or other. The substitution of (2) into (1) gives the so-called Fourier integral formula
+
$$ \tag{3 }
 +
f ( x) = {
 +
\frac{1} \pi
 +
}
 +
\int\limits _ { 0 } ^  \infty 
 +
\int\limits _ {- \infty } ^ { {+ }  \infty }
 +
f ( \xi ) \cos  \lambda
 +
( x - \xi ) d \xi  d \lambda ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f0410506.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
whose proof reduces to the tests mentioned above. It can be of great advantage to use the representation of  $  f $
 +
by the simple Fourier integral
  
whose proof reduces to the tests mentioned above. It can be of great advantage to use the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f0410507.png" /> by the simple Fourier integral
+
$$
 +
f ( x)  = \
 +
\lim\limits _ {N \rightarrow \infty } \
 +
{
 +
\frac{1} \pi
 +
}
 +
\int\limits _ {- \infty } ^ { {+ }  \infty }
 +
f ( \xi )
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f0410508.png" /></td> </tr></table>
+
\frac{\sin  N ( x - \xi ) }{x - \xi }
 +
  d \xi ,
 +
$$
  
which is obtained from (3) by writing the inner integral as a limit over the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f0410509.png" /> and changing the order of integration. In applied sciences the representation (1) is often interpreted as expansion into harmonics: If
+
which is obtained from (3) by writing the inner integral as a limit over the interval $  ( 0, N) $
 +
and changing the order of integration. In applied sciences the representation (1) is often interpreted as expansion into harmonics: If
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105010.png" /></td> </tr></table>
+
$$
 +
D ( \lambda )  = \
 +
\sqrt {| A ( \lambda ) |  ^ {2} +
 +
| B ( \lambda ) |  ^ {2} } ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105011.png" /></td> </tr></table>
+
$$
 +
\cos  \phi ( \lambda )  =
 +
\frac{B ( \lambda ) }{D (
 +
\lambda ) }
 +
,\  \sin  \phi ( \lambda )  =
 +
\frac{A ( \lambda ) }{D ( \lambda ) }
 +
,
 +
$$
  
 
then (1) takes the form:
 
then (1) takes the form:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105012.png" /></td> </tr></table>
+
$$
 +
f ( x)  = \
 +
\int\limits _ { 0 } ^  \infty 
 +
D ( \lambda )  \sin
 +
[ \lambda x + \phi ( \lambda )] \
 +
d \lambda ,
 +
$$
  
and thus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105013.png" /> is represented by a superposition of harmonics with frequencies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105014.png" /> which continuously fill the real semi-axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105015.png" />, while the amplitude <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105016.png" /> and the initial phase <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105017.png" /> depend on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105018.png" />.
+
and thus f $
 +
is represented by a superposition of harmonics with frequencies $  \lambda $
 +
which continuously fill the real semi-axis $  ( 0, \infty ) $,
 +
while the amplitude $  D $
 +
and the initial phase $  \phi $
 +
depend on $  \lambda $.
  
In many cases (in particular for complex-valued functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105019.png" />) it is more convenient to present (1) in exponential form:
+
In many cases (in particular for complex-valued functions f $)  
 +
it is more convenient to present (1) in exponential form:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105020.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
f ( x)  = \
 +
\int\limits _ {- \infty } ^ { {+ }  \infty }
 +
C ( \lambda )
 +
e ^ {i \lambda x } \
 +
d \lambda ,\ \
 +
C ( \lambda )  = \
 +
{
 +
\frac{1}{\sqrt {2 \pi } }
 +
}
 +
\widetilde{f( \lambda ),
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105021.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{5 }
 +
\widetilde{f}  ( \lambda )  = \
 +
{
 +
\frac{1}{\sqrt {2 \pi } }
 +
}
 +
\int\limits _ {- \infty } ^ { {+ }  \infty }
 +
f ( x) e ^ {- i \lambda x }  dx.
 +
$$
  
The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105022.png" /> is called the [[Fourier transform|Fourier transform]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105023.png" /> (in applied sciences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105024.png" /> is called the frequency characteristic or the spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105025.png" />).
+
The function $  \widetilde{f}  $
 +
is called the [[Fourier transform|Fourier transform]] of f $(
 +
in applied sciences $  C ( \lambda ) $
 +
is called the frequency characteristic or the spectrum of f $).
  
Under the condition that the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105026.png" /> is summable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105027.png" />, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105028.png" /> is bounded, uniformly continuous on the real axis and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105029.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105030.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105031.png" /> need not be integrable and so the integral (4) need not exist. However, (4) admits a reasonable interpretation if methods of summing integrals are used (here one can consider not only pointwise convergence but also convergence in the mean). For example, the arithmetical means of the truncated Fourier integrals
+
Under the condition that the function f $
 +
is summable $  ( f \in L _ {1} (- \infty , + \infty )) $,  
 +
the function $  \widetilde{f}  $
 +
is bounded, uniformly continuous on the real axis and $  \widetilde{f}  ( \lambda ) \rightarrow 0 $
 +
as $  | \lambda | \rightarrow \infty $.  
 +
The function $  \widetilde{f}  $
 +
need not be integrable and so the integral (4) need not exist. However, (4) admits a reasonable interpretation if methods of summing integrals are used (here one can consider not only pointwise convergence but also convergence in the mean). For example, the arithmetical means of the truncated Fourier integrals
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105032.png" /></td> </tr></table>
+
$$
 +
{
 +
\frac{1}{N}
 +
}
 +
\int\limits _ { 0 } ^ { N }
 +
{
 +
\frac{1}{\sqrt {2 \pi } }
 +
}
 +
\int\limits _ {- \omega } ^ { {+ }  \omega }
 +
\widetilde{f}  ( \lambda )
 +
e ^ {i \lambda x } \
 +
d \lambda  d \omega \equiv
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105033.png" /></td> </tr></table>
+
$$
 +
\equiv \
 +
{
 +
\frac{1}{\sqrt {2 \pi } }
 +
}
 +
\int\limits _ { - } N ^ { N }  \left ( 1 - {
 +
\frac{| \lambda | }{N}
 +
}
 +
\right ) \widetilde{f}  ( \lambda ) e ^ {i \lambda x }  d \lambda \equiv
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105034.png" /></td> </tr></table>
+
$$
 +
\equiv \
 +
{
 +
\frac{1} \pi
 +
}
 +
\int\limits _ {- \infty } ^ { {+ }  \infty } f ( \xi )
 +
\frac{2  \sin  ^ {2}
 +
N ( x - \xi )/2 }{N ( x - \xi )  ^ {2} }
 +
  d \xi
 +
$$
  
of a summable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105035.png" /> converge in the mean to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105036.png" /> almost-everywhere as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105037.png" />. With additional restrictions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105038.png" /> one can obtain more specific assertions. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105039.png" /> and has bounded variation in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105040.png" />, then
+
of a summable function f $
 +
converge in the mean to f $
 +
almost-everywhere as $  N \rightarrow \infty $.  
 +
With additional restrictions on f $
 +
one can obtain more specific assertions. For example, if f \in L _ {1} $
 +
and has bounded variation in a neighbourhood of $  x $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105041.png" /></td> <td valign="top" style="width:5%;text-align:right;">(6)</td></tr></table>
+
$$ \tag{6 }
 +
{
 +
\frac{f ( x + 0) + f ( x - 0) }{2}
 +
= \
 +
\lim\limits _ {\omega \rightarrow \infty } \
 +
{
 +
\frac{1}{\sqrt {2 \pi } }
 +
}
 +
\int\limits _ {- \omega } ^ { {+ }  \omega }
 +
\widetilde{f( \lambda )
 +
e ^ {i \lambda x } \
 +
d \lambda .
 +
$$
  
 
In applications one often uses the representation
 
In applications one often uses the representation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105042.png" /></td> </tr></table>
+
$$
 +
{
 +
\frac{f ( x + 0) + f ( x - 0) }{2}
 +
= \
 +
{
 +
\frac{1}{\sqrt {2 \pi } }
 +
}
 +
\int\limits _ {- \infty } ^ { {+ }  \infty }
 +
\widetilde{f}  ( \lambda )
 +
e ^ {i \lambda x } \
 +
d \lambda ,
 +
$$
  
which is true for an absolutely-integrable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105043.png" /> that is piecewise smooth in every finite interval, where the integral on the right-hand side is taken to mean the principal value (6). The Fourier integral is also studied when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105044.png" /> is assumed to be locally summable and with some hypotheses imposing restrictions on the behaviour of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105045.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105046.png" />. For example, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105047.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105048.png" />, then
+
which is true for an absolutely-integrable function f $
 +
that is piecewise smooth in every finite interval, where the integral on the right-hand side is taken to mean the principal value (6). The Fourier integral is also studied when f $
 +
is assumed to be locally summable and with some hypotheses imposing restrictions on the behaviour of f $
 +
at $  \infty $.  
 +
For example, let f \in L _ {p} $,  
 +
$  1 \leq  p \leq  2 $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105049.png" /></td> <td valign="top" style="width:5%;text-align:right;">(7)</td></tr></table>
+
$$ \tag{7 }
 +
\widetilde{f}  ( \lambda )  = \
 +
\lim\limits _ {A \rightarrow \infty } {} ^ {p  ^  \prime  } \
 +
{
 +
\frac{1}{\sqrt {2 \pi } }
 +
}
 +
\int\limits _ { - } A ^ { + }  A
 +
f ( x) e ^ {- i \lambda x }  dx,
 +
$$
  
where the limit is understood to be convergence in the mean of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105051.png" /> (however, the limit in (7) also exists in the sense of convergence almost-everywhere). This result acquires a simple form when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105052.png" /> (see [[Plancherel theorem|Plancherel theorem]]).
+
where the limit is understood to be convergence in the mean of order $  p  ^  \prime  $,
 +
$  1/p + 1/p  ^  \prime  = 1 $(
 +
however, the limit in (7) also exists in the sense of convergence almost-everywhere). This result acquires a simple form when $  p = 2 $(
 +
see [[Plancherel theorem|Plancherel theorem]]).
  
The theory of multiple Fourier integrals is constructed analogously when one discusses the expansion of a function given on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041050/f04105053.png" />-dimensional space. The concept of the Fourier integral has been extended also to generalized functions.
+
The theory of multiple Fourier integrals is constructed analogously when one discusses the expansion of a function given on an $  n $-
 +
dimensional space. The concept of the Fourier integral has been extended also to generalized functions.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.C. Titchmarsh,  "Introduction to the theory of Fourier integrals" , Oxford Univ. Press  (1948)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Bochner,  "Lectures on Fourier integrals" , Princeton Univ. Press  (1959)  (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''2''' , Cambridge Univ. Press  (1988)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.C. Titchmarsh,  "Introduction to the theory of Fourier integrals" , Oxford Univ. Press  (1948)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Bochner,  "Lectures on Fourier integrals" , Princeton Univ. Press  (1959)  (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''2''' , Cambridge Univ. Press  (1988)</TD></TR></table>

Latest revision as of 19:39, 5 June 2020


The non-discrete analogue of a Fourier series. The representation of a function given on a finite interval of the real axis by a Fourier series is very important. An analogous role is played by the representation of a function $ f $ given on the whole axis by a Fourier integral:

$$ \tag{1 } f ( x) = \ \int\limits _ { 0 } ^ \infty [ A ( \lambda ) \cos \lambda x + B ( \lambda ) \sin \lambda x] \ d \lambda , $$

where

$$ \tag{2 } A ( \lambda ) = { \frac{1} \pi } \int\limits _ {- \infty } ^ { {+ } \infty } f ( \xi ) \cos \lambda \xi \ d \xi , $$

$$ B ( \lambda ) = { \frac{1} \pi } \int\limits _ {- \infty } ^ { {+ } \infty } f ( \xi ) \sin \lambda \xi d \xi . $$

The representation (1) can be constructed formally by assuming the existence of the described integrals. It is valid, for example, for a smooth function $ f $ of compact support. There are a great number of tests guaranteeing equation (1) in some sense or other. The substitution of (2) into (1) gives the so-called Fourier integral formula

$$ \tag{3 } f ( x) = { \frac{1} \pi } \int\limits _ { 0 } ^ \infty \int\limits _ {- \infty } ^ { {+ } \infty } f ( \xi ) \cos \lambda ( x - \xi ) d \xi d \lambda , $$

whose proof reduces to the tests mentioned above. It can be of great advantage to use the representation of $ f $ by the simple Fourier integral

$$ f ( x) = \ \lim\limits _ {N \rightarrow \infty } \ { \frac{1} \pi } \int\limits _ {- \infty } ^ { {+ } \infty } f ( \xi ) \frac{\sin N ( x - \xi ) }{x - \xi } d \xi , $$

which is obtained from (3) by writing the inner integral as a limit over the interval $ ( 0, N) $ and changing the order of integration. In applied sciences the representation (1) is often interpreted as expansion into harmonics: If

$$ D ( \lambda ) = \ \sqrt {| A ( \lambda ) | ^ {2} + | B ( \lambda ) | ^ {2} } , $$

$$ \cos \phi ( \lambda ) = \frac{B ( \lambda ) }{D ( \lambda ) } ,\ \sin \phi ( \lambda ) = \frac{A ( \lambda ) }{D ( \lambda ) } , $$

then (1) takes the form:

$$ f ( x) = \ \int\limits _ { 0 } ^ \infty D ( \lambda ) \sin [ \lambda x + \phi ( \lambda )] \ d \lambda , $$

and thus $ f $ is represented by a superposition of harmonics with frequencies $ \lambda $ which continuously fill the real semi-axis $ ( 0, \infty ) $, while the amplitude $ D $ and the initial phase $ \phi $ depend on $ \lambda $.

In many cases (in particular for complex-valued functions $ f $) it is more convenient to present (1) in exponential form:

$$ \tag{4 } f ( x) = \ \int\limits _ {- \infty } ^ { {+ } \infty } C ( \lambda ) e ^ {i \lambda x } \ d \lambda ,\ \ C ( \lambda ) = \ { \frac{1}{\sqrt {2 \pi } } } \widetilde{f} ( \lambda ), $$

where

$$ \tag{5 } \widetilde{f} ( \lambda ) = \ { \frac{1}{\sqrt {2 \pi } } } \int\limits _ {- \infty } ^ { {+ } \infty } f ( x) e ^ {- i \lambda x } dx. $$

The function $ \widetilde{f} $ is called the Fourier transform of $ f $( in applied sciences $ C ( \lambda ) $ is called the frequency characteristic or the spectrum of $ f $).

Under the condition that the function $ f $ is summable $ ( f \in L _ {1} (- \infty , + \infty )) $, the function $ \widetilde{f} $ is bounded, uniformly continuous on the real axis and $ \widetilde{f} ( \lambda ) \rightarrow 0 $ as $ | \lambda | \rightarrow \infty $. The function $ \widetilde{f} $ need not be integrable and so the integral (4) need not exist. However, (4) admits a reasonable interpretation if methods of summing integrals are used (here one can consider not only pointwise convergence but also convergence in the mean). For example, the arithmetical means of the truncated Fourier integrals

$$ { \frac{1}{N} } \int\limits _ { 0 } ^ { N } { \frac{1}{\sqrt {2 \pi } } } \int\limits _ {- \omega } ^ { {+ } \omega } \widetilde{f} ( \lambda ) e ^ {i \lambda x } \ d \lambda d \omega \equiv $$

$$ \equiv \ { \frac{1}{\sqrt {2 \pi } } } \int\limits _ { - } N ^ { N } \left ( 1 - { \frac{| \lambda | }{N} } \right ) \widetilde{f} ( \lambda ) e ^ {i \lambda x } d \lambda \equiv $$

$$ \equiv \ { \frac{1} \pi } \int\limits _ {- \infty } ^ { {+ } \infty } f ( \xi ) \frac{2 \sin ^ {2} N ( x - \xi )/2 }{N ( x - \xi ) ^ {2} } d \xi $$

of a summable function $ f $ converge in the mean to $ f $ almost-everywhere as $ N \rightarrow \infty $. With additional restrictions on $ f $ one can obtain more specific assertions. For example, if $ f \in L _ {1} $ and has bounded variation in a neighbourhood of $ x $, then

$$ \tag{6 } { \frac{f ( x + 0) + f ( x - 0) }{2} } = \ \lim\limits _ {\omega \rightarrow \infty } \ { \frac{1}{\sqrt {2 \pi } } } \int\limits _ {- \omega } ^ { {+ } \omega } \widetilde{f} ( \lambda ) e ^ {i \lambda x } \ d \lambda . $$

In applications one often uses the representation

$$ { \frac{f ( x + 0) + f ( x - 0) }{2} } = \ { \frac{1}{\sqrt {2 \pi } } } \int\limits _ {- \infty } ^ { {+ } \infty } \widetilde{f} ( \lambda ) e ^ {i \lambda x } \ d \lambda , $$

which is true for an absolutely-integrable function $ f $ that is piecewise smooth in every finite interval, where the integral on the right-hand side is taken to mean the principal value (6). The Fourier integral is also studied when $ f $ is assumed to be locally summable and with some hypotheses imposing restrictions on the behaviour of $ f $ at $ \infty $. For example, let $ f \in L _ {p} $, $ 1 \leq p \leq 2 $, then

$$ \tag{7 } \widetilde{f} ( \lambda ) = \ \lim\limits _ {A \rightarrow \infty } {} ^ {p ^ \prime } \ { \frac{1}{\sqrt {2 \pi } } } \int\limits _ { - } A ^ { + } A f ( x) e ^ {- i \lambda x } dx, $$

where the limit is understood to be convergence in the mean of order $ p ^ \prime $, $ 1/p + 1/p ^ \prime = 1 $( however, the limit in (7) also exists in the sense of convergence almost-everywhere). This result acquires a simple form when $ p = 2 $( see Plancherel theorem).

The theory of multiple Fourier integrals is constructed analogously when one discusses the expansion of a function given on an $ n $- dimensional space. The concept of the Fourier integral has been extended also to generalized functions.

References

[1] E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948)
[2] S. Bochner, "Lectures on Fourier integrals" , Princeton Univ. Press (1959) (Translated from German)
[3] A. Zygmund, "Trigonometric series" , 2 , Cambridge Univ. Press (1988)
How to Cite This Entry:
Fourier integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fourier_integral&oldid=17929
This article was adapted from an original article by P.I. Lizorkin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article