Namespaces
Variants
Actions

Difference between revisions of "Fourier coefficients of an almost-periodic function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(Category:Harmonic analysis on Euclidean spaces)
 
Line 20: Line 20:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.S. Besicovitch,  "Almost periodic functions" , Cambridge Univ. Press  (1932)  pp. Chapt. I</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Wiener,  "The Fourier integral and certain of its applications" , Dover, reprint  (1933)  pp. Chapt. II</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  A.S. Besicovitch,  "Almost periodic functions" , Cambridge Univ. Press  (1932)  pp. Chapt. I</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Wiener,  "The Fourier integral and certain of its applications" , Dover, reprint  (1933)  pp. Chapt. II</TD></TR>
 +
</table>
 +
 
 +
[[Category:Harmonic analysis on Euclidean spaces]]

Latest revision as of 21:53, 7 November 2014

The coefficients $a_n$ of the Fourier series (cf. Fourier series of an almost-periodic function) corresponding to the given almost-periodic function $f$:

$$f(x)\sim\sum_na_n e^{i\lambda_n}x,$$

where

$$a_n=M\{f(x)e^{-i\lambda_nx}\}=\lim_{T\to\infty}\frac1T\int\limits_0^Tf(x)e^{-i\lambda_nx}dx.$$

The coefficients $a_n$ are completely determined by the theorem on the existence of the mean value

$$a(\lambda)=M\{f(x)e^{-i\lambda x}\},$$

which is non-zero only for the countable set of values $\lambda=\lambda_n$.


Comments

References

[a1] A.S. Besicovitch, "Almost periodic functions" , Cambridge Univ. Press (1932) pp. Chapt. I
[a2] N. Wiener, "The Fourier integral and certain of its applications" , Dover, reprint (1933) pp. Chapt. II
How to Cite This Entry:
Fourier coefficients of an almost-periodic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fourier_coefficients_of_an_almost-periodic_function&oldid=32626
This article was adapted from an original article by E.A. Bredikhina (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article