Flux of a vector field

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 26B20 [MSN][ZBL]

A concept in the integral calculus of functions in several variables. Let $\Omega\subset \mathbb R^n$ be an open set and $v$ a (continuous) vector field on $\Omega$, namely a map $v: \Omega\to \mathbb R^n$. If $\Sigma\subset\Omega$ is a $C^1$ $n-1$-dimensional surface oriented by a (continuous) unit normal $\nu$, the flux of the vector field $v$ through the surface $\Sigma$ is given by the integral \begin{equation}\label{e:flux} \int_\Sigma v\cdot \nu\, . \end{equation} The integral in \eqref{e:flux} is a surface integral, which is computed using the Area formula. If $\Sigma$ is given by the graph of a function $f: \mathbb R^{n-1} \supset V \to \mathbb R$ with its natural orientation, namely with \[ \nu (x_1, \ldots, x_{n-1}, f(x_1, \ldots, x_{n-1})) = \frac{(-\nabla f, 1)}{\sqrt{1+|\nabla f|^2}} (x_1, \ldots, x_{n-1})\, , \] then we have the useful formula \[ \int_{\partial U} v\cdot \nu = \int \left(v_n (x', f (x')) - \frac{\partial f}{\partial x_1} (x') v_1 (x', f(x')) - \ldots - \frac{\partial f}{\partial x_{n-1}} (x') v_{n-1} (x', f (x'))\right)\, dx'\, , \] where $x' = (x_1, \ldots , x_{n-1})$. The latter formula can be used to define the flux of a vector field over a general $C^1$ surface using a partition of unity.

An alternative powerful way to define the surface integral in \eqref{e:flux} is to resort to differential forms and their integration of manifolds, see [Sp]. More precisely, if $v_1, \ldots, v_n$ are the components of the vector function $v$, it is convenient to introduce the $n-1$-form \[ \omega = \sum_{i=1}^n (-1)^{i-1} v_i dx_1 \wedge \ldots \wedge dx_{i-1}\wedge dx_{i+1} \wedge \ldots \wedge dx_n\, . \] Then it turns out that the integral in \eqref{e:flux} is in fact \[ \int_{\Sigma} \omega\, . \]

The divergence theorem relates the flux of a differentiable vector field of $v$ through the boundary of a regular open set $U$ to the integral over $U$ of the divergence of $v$. This important theorem (which goes also under the name Green formula, Gauss-Green formula, Gauss formula, Ostrogradski formula, Gauss-Ostrogradski formula or Gauss-Green-Ostrogradski formula) is a generalization of the Fundamental theorem of calculus and it is a particular case of the more general Stokes theorem on integral of differential forms.


[CH] R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German) MR0195654
[Gr] G. Green, "An essay on the application of mathematical analysis to the theories of electricity and magnetism" , Nottingham (1828) (Reprint: Mathematical papers, Chelsea, reprint, 1970, pp. 1–82) Zbl 21.0014.03
[Kr] A.M. Krall, "Applied analysis" , Reidel (1986) pp. 380
[Os1] M.V. Ostrogradski, Mém. Acad. Sci. St. Petersbourg. Sér. 6. Sci. Math. Phys. et Naturelles , 1 (1831) pp. 117–122
[Os2] M.V. Ostrogradski, Mém. Acad. Sci. St. Petersbourg. Sér. 6. Sci. Math. Phys. et Naturelles , 1 (1838) pp. 35–58
[Sp] M. Spivak, "Calculus on manifolds" , Benjamin (1965)
[Tr] H. Triebel, "Analysis and mathematical physics" , Reidel (1986) pp. Sect. 9.3.1
[Wi] A.P. Wills, "Vector analysis with an introduction to tensor analysis" , Dover, reprint (1958) pp. 97ff
[vW ] C. von Westenholz, "Differential forms in mathematical physics" , North-Holland (1981) pp. 286ff
How to Cite This Entry:
Flux of a vector field. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by BSE-3 (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article