Namespaces
Variants
Actions

Difference between revisions of "Epidemic process"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A random process (cf. [[Stochastic process|Stochastic process]]) that serves as a mathematical model of the spread of some epidemy. One of the simplest such models can be described as a continuous-time [[Markov process|Markov process]] whose states at the moment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e0358701.png" /> are the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e0358702.png" /> of sick persons and the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e0358703.png" /> of exposed persons. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e0358704.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e0358705.png" />, then at the time <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e0358706.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e0358707.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e0358708.png" />, the transition probability is determined as follows: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e0358709.png" /> with probability <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e03587010.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e03587011.png" /> with probability <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e03587012.png" />. In this case the generating function
+
<!--
 +
e0358701.png
 +
$#A+1 = 14 n = 0
 +
$#C+1 = 14 : ~/encyclopedia/old_files/data/E035/E.0305870 Epidemic process
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e03587013.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A random process (cf. [[Stochastic process|Stochastic process]]) that serves as a mathematical model of the spread of some epidemy. One of the simplest such models can be described as a continuous-time [[Markov process|Markov process]] whose states at the moment  $  t $
 +
are the number  $  \mu _ {1} ( t) $
 +
of sick persons and the number  $  \mu _ {2} ( t) $
 +
of exposed persons. If  $  \mu _ {1} ( t) = m $
 +
and  $  \mu _ {2} ( t) = n $,
 +
then at the time  $  t $,
 +
$  t + \Delta t $,
 +
$  \Delta t \rightarrow 0 $,
 +
the transition probability is determined as follows: $  ( m , n ) \rightarrow ( m + 1 , n - 1 ) $
 +
with probability  $  \lambda _ {mn} \Delta = O ( \Delta t ) $;  
 +
$  ( m , n ) \rightarrow ( m - 1 , n ) $
 +
with probability  $  \mu m \Delta t + O ( \Delta t ) $.
 +
In this case the generating function
 +
 
 +
$$
 +
F ( t ; x , y )  = {\mathsf E} x ^ {\mu _ {1} ( t) }
 +
y ^ {\mu _ {2} ( t) }
 +
$$
  
 
satisfies the differential equation
 
satisfies the differential equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035870/e03587014.png" /></td> </tr></table>
+
$$
  
 +
\frac{\partial  F }{\partial  t }
 +
  =  \lambda
 +
( x  ^ {2} - x y )
 +
\frac{\partial  ^ {2} F }{\partial  x \partial  y }
 +
+ \mu ( 1 - x )
  
 +
\frac{\partial  F }{\partial  x }
 +
.
 +
$$
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.T.J. Bailey,  "The mathematical theory of infections diseases and its applications" , Hafner  (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D. Ludwig,  "Stochastic population theories" , Springer  (1974)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.T.J. Bailey,  "The mathematical theory of infections diseases and its applications" , Hafner  (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D. Ludwig,  "Stochastic population theories" , Springer  (1974)</TD></TR></table>

Latest revision as of 19:37, 5 June 2020


A random process (cf. Stochastic process) that serves as a mathematical model of the spread of some epidemy. One of the simplest such models can be described as a continuous-time Markov process whose states at the moment $ t $ are the number $ \mu _ {1} ( t) $ of sick persons and the number $ \mu _ {2} ( t) $ of exposed persons. If $ \mu _ {1} ( t) = m $ and $ \mu _ {2} ( t) = n $, then at the time $ t $, $ t + \Delta t $, $ \Delta t \rightarrow 0 $, the transition probability is determined as follows: $ ( m , n ) \rightarrow ( m + 1 , n - 1 ) $ with probability $ \lambda _ {mn} \Delta = O ( \Delta t ) $; $ ( m , n ) \rightarrow ( m - 1 , n ) $ with probability $ \mu m \Delta t + O ( \Delta t ) $. In this case the generating function

$$ F ( t ; x , y ) = {\mathsf E} x ^ {\mu _ {1} ( t) } y ^ {\mu _ {2} ( t) } $$

satisfies the differential equation

$$ \frac{\partial F }{\partial t } = \lambda ( x ^ {2} - x y ) \frac{\partial ^ {2} F }{\partial x \partial y } + \mu ( 1 - x ) \frac{\partial F }{\partial x } . $$

Comments

References

[a1] N.T.J. Bailey, "The mathematical theory of infections diseases and its applications" , Hafner (1975)
[a2] D. Ludwig, "Stochastic population theories" , Springer (1974)
How to Cite This Entry:
Epidemic process. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Epidemic_process&oldid=46834
This article was adapted from an original article by B.A. Sevast'yanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article