Namespaces
Variants
Actions

Difference between revisions of "Emden equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
e0355601.png
 +
$#A+1 = 27 n = 0
 +
$#C+1 = 27 : ~/encyclopedia/old_files/data/E035/E.0305560 Emden equation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
The non-linear second-order ordinary differential equation
 
The non-linear second-order ordinary differential equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e0355601.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
 
 +
\frac{d  ^ {2} y }{d x  ^ {2} }
 +
+
 +
 
 +
\frac{2}{x}
 +
 +
\frac{d y }{d x }
 +
+ y  ^  \alpha  = 0 ,
 +
$$
  
 
or, in self-adjoint form,
 
or, in self-adjoint form,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e0355602.png" /></td> </tr></table>
+
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e0355603.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e0355604.png" />, is a constant. The point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e0355605.png" /> is singular for the Emden equation. By the change of variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e0355606.png" /> equation (1) becomes
+
\frac{d}{dx}
 +
\left ( x  ^ {2}
 +
\frac{d y }{d x }
 +
\right ) +
 +
x  ^ {2} y  ^  \alpha  = 0 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e0355607.png" /></td> </tr></table>
+
where  $  \alpha > 0 $,
 +
$  \alpha \neq 1 $,
 +
is a constant. The point  $  x = 0 $
 +
is singular for the Emden equation. By the change of variable  $  x = 1 / \xi $
 +
equation (1) becomes
  
and by the change of variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e0355608.png" />,
+
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e0355609.png" /></td> </tr></table>
+
\frac{d  ^ {2} y }{d \xi  ^ {2} }
 +
+
 +
 
 +
\frac{y  ^  \alpha  }{\xi  ^ {4} }
 +
  = 0 ;
 +
$$
 +
 
 +
and by the change of variable  $  y = \eta / x $,
 +
 
 +
$$
 +
 
 +
\frac{d  ^ {2} \eta }{d x  ^ {2} }
 +
+
 +
 
 +
\frac{\eta  ^  \alpha  }{x ^ {\alpha - 1 } }
 +
  = 0 .
 +
$$
  
 
After the changes of variables
 
After the changes of variables
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556010.png" /></td> </tr></table>
+
$$
 +
= e  ^ {-} t ,\  y  = e ^ {\mu t } u ,\ \
 +
\mu  =
 +
\frac{2}{( \alpha - 1 ) }
 +
,
 +
$$
  
and subsequent lowering of the order by the substitution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556011.png" />, one obtains the first-order equation
+
and subsequent lowering of the order by the substitution $  u  ^  \prime  = v ( u ) $,  
 +
one obtains the first-order equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556012.png" /></td> </tr></table>
+
$$
  
Equation (1) was obtained by R. Emden [[#References|[1]]] in connection with a study of equilibrium conditions for a polytropic gas ball; this study led him to the problem of the existence of a solution of (1) with the initial conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556014.png" />, defined on a certain segment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556016.png" />, and having the properties
+
\frac{d v }{d u }
 +
  =  - ( 2 \mu - 1 ) -
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556017.png" /></td> </tr></table>
+
\frac{\mu ( \mu - 1 ) \mu + \mu  ^  \alpha  }{v}
 +
.
 +
$$
 +
 
 +
Equation (1) was obtained by R. Emden [[#References|[1]]] in connection with a study of equilibrium conditions for a polytropic gas ball; this study led him to the problem of the existence of a solution of (1) with the initial conditions  $  y ( 0) = 1 $,
 +
$  y  ^  \prime  ( 0) = 0 $,
 +
defined on a certain segment  $  [ 0 , x _ {0} ] $,
 +
$  0 < x _ {0} < \infty $,
 +
and having the properties
 +
 
 +
$$
 +
y ( x)  > 0 \  \textrm{ for }  0 \leq  x < x _ {0} ,\ \
 +
y ( x _ {0} )  = 0 .
 +
$$
  
 
Occasionally (1) is also called the Lienard–Emden equation.
 
Occasionally (1) is also called the Lienard–Emden equation.
Line 31: Line 97:
 
More general than Emden's equation is the Fowler equation
 
More general than Emden's equation is the Fowler equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556018.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{d}{dx}
 +
\left ( x  ^ {2}
 +
\frac{dy}{dx}
 +
\right ) + x  ^  \lambda  y  ^  \alpha
 +
= 0 ,\  \lambda , \alpha  > 0 ,
 +
$$
  
 
and the Emden–Fowler equation
 
and the Emden–Fowler equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556019.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
 
 +
\frac{d}{dx}
 +
\left ( x  ^  \rho 
 +
\frac{dy}{dx}
 +
\right ) \pm  x  ^  \lambda
 +
y  ^  \alpha  = 0 ,
 +
$$
 +
 
 +
where  $  \rho $,
 +
$  \lambda $,
 +
$  \alpha \neq 1 $
 +
are real parameters. As a special case this includes the Thomas–Fermi equation
 +
 
 +
$$
 +
 
 +
\frac{d  ^ {2} y }{d x  ^ {2} }
 +
  = \
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556022.png" /> are real parameters. As a special case this includes the Thomas–Fermi equation
+
\frac{y  ^ {3/2} }{\sqrt x }
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556023.png" /></td> </tr></table>
+
which arises in the study of the distribution of electrons in an atom. If  $  \rho \neq 1 $,
 +
then by a change of variables (2) can be brought to the form
  
which arises in the study of the distribution of electrons in an atom. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556024.png" />, then by a change of variables (2) can be brought to the form
+
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556025.png" /></td> </tr></table>
+
\frac{d  ^ {2} w }{d s  ^ {2} }
 +
\pm
 +
s  ^  \sigma  w  ^  \alpha  = 0 .
 +
$$
  
 
There are various results in the qualitative and asymptotic investigation of solutions of the Emden–Fowler equation (see, for example, [[#References|[2]]], [[#References|[3]]]). A detailed study has also been made of the equation of Emden–Fowler type
 
There are various results in the qualitative and asymptotic investigation of solutions of the Emden–Fowler equation (see, for example, [[#References|[2]]], [[#References|[3]]]). A detailed study has also been made of the equation of Emden–Fowler type
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556026.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{d  ^ {2} y }{d x  ^ {2} }
 +
+ a
 +
( x) | y |  ^  \alpha  \mathop{\rm sign}  y  = 0
 +
$$
  
(on this and its analogue of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556027.png" /> see [[#References|[4]]]).
+
(on this and its analogue of order $  n $
 +
see [[#References|[4]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R. Emden,  "Gaskugeln" , Teubner  (1907)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G. Sansone,  "Equazioni differenziali nel campo reale" , '''2''' , Zanichelli  (1949)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R.E. Bellman,  "Stability theory of differential equations" , McGraw-Hill  (1953)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  I.T. Kiguradze,  "Some singular boundary value problems for ordinary differential equations" , Tbilisi  (1975)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R. Emden,  "Gaskugeln" , Teubner  (1907)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G. Sansone,  "Equazioni differenziali nel campo reale" , '''2''' , Zanichelli  (1949)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R.E. Bellman,  "Stability theory of differential equations" , McGraw-Hill  (1953)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  I.T. Kiguradze,  "Some singular boundary value problems for ordinary differential equations" , Tbilisi  (1975)  (In Russian)</TD></TR></table>

Latest revision as of 19:37, 5 June 2020


The non-linear second-order ordinary differential equation

$$ \tag{1 } \frac{d ^ {2} y }{d x ^ {2} } + \frac{2}{x} \frac{d y }{d x } + y ^ \alpha = 0 , $$

or, in self-adjoint form,

$$ \frac{d}{dx} \left ( x ^ {2} \frac{d y }{d x } \right ) + x ^ {2} y ^ \alpha = 0 , $$

where $ \alpha > 0 $, $ \alpha \neq 1 $, is a constant. The point $ x = 0 $ is singular for the Emden equation. By the change of variable $ x = 1 / \xi $ equation (1) becomes

$$ \frac{d ^ {2} y }{d \xi ^ {2} } + \frac{y ^ \alpha }{\xi ^ {4} } = 0 ; $$

and by the change of variable $ y = \eta / x $,

$$ \frac{d ^ {2} \eta }{d x ^ {2} } + \frac{\eta ^ \alpha }{x ^ {\alpha - 1 } } = 0 . $$

After the changes of variables

$$ x = e ^ {-} t ,\ y = e ^ {\mu t } u ,\ \ \mu = \frac{2}{( \alpha - 1 ) } , $$

and subsequent lowering of the order by the substitution $ u ^ \prime = v ( u ) $, one obtains the first-order equation

$$ \frac{d v }{d u } = - ( 2 \mu - 1 ) - \frac{\mu ( \mu - 1 ) \mu + \mu ^ \alpha }{v} . $$

Equation (1) was obtained by R. Emden [1] in connection with a study of equilibrium conditions for a polytropic gas ball; this study led him to the problem of the existence of a solution of (1) with the initial conditions $ y ( 0) = 1 $, $ y ^ \prime ( 0) = 0 $, defined on a certain segment $ [ 0 , x _ {0} ] $, $ 0 < x _ {0} < \infty $, and having the properties

$$ y ( x) > 0 \ \textrm{ for } 0 \leq x < x _ {0} ,\ \ y ( x _ {0} ) = 0 . $$

Occasionally (1) is also called the Lienard–Emden equation.

More general than Emden's equation is the Fowler equation

$$ \frac{d}{dx} \left ( x ^ {2} \frac{dy}{dx} \right ) + x ^ \lambda y ^ \alpha = 0 ,\ \lambda , \alpha > 0 , $$

and the Emden–Fowler equation

$$ \tag{2 } \frac{d}{dx} \left ( x ^ \rho \frac{dy}{dx} \right ) \pm x ^ \lambda y ^ \alpha = 0 , $$

where $ \rho $, $ \lambda $, $ \alpha \neq 1 $ are real parameters. As a special case this includes the Thomas–Fermi equation

$$ \frac{d ^ {2} y }{d x ^ {2} } = \ \frac{y ^ {3/2} }{\sqrt x } , $$

which arises in the study of the distribution of electrons in an atom. If $ \rho \neq 1 $, then by a change of variables (2) can be brought to the form

$$ \frac{d ^ {2} w }{d s ^ {2} } \pm s ^ \sigma w ^ \alpha = 0 . $$

There are various results in the qualitative and asymptotic investigation of solutions of the Emden–Fowler equation (see, for example, [2], [3]). A detailed study has also been made of the equation of Emden–Fowler type

$$ \frac{d ^ {2} y }{d x ^ {2} } + a ( x) | y | ^ \alpha \mathop{\rm sign} y = 0 $$

(on this and its analogue of order $ n $ see [4]).

References

[1] R. Emden, "Gaskugeln" , Teubner (1907)
[2] G. Sansone, "Equazioni differenziali nel campo reale" , 2 , Zanichelli (1949)
[3] R.E. Bellman, "Stability theory of differential equations" , McGraw-Hill (1953)
[4] I.T. Kiguradze, "Some singular boundary value problems for ordinary differential equations" , Tbilisi (1975) (In Russian)
How to Cite This Entry:
Emden equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Emden_equation&oldid=46818
This article was adapted from an original article by N.Kh. Rozov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article