Namespaces
Variants
Actions

Difference between revisions of "Ellipse of normal curvature"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A geometrical construction characterizing the distribution of the curvatures at a certain point on a regular surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e0354001.png" /> in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e0354002.png" />-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e0354003.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e0354004.png" /> be a point on a surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e0354005.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e0354006.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e0354007.png" />-dimensional subspace containing the normal space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e0354008.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e0354009.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540010.png" /> and the tangent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540011.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540012.png" /> in the direction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540013.png" />. The section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540014.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540015.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540016.png" /> is called a normal section at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540017.png" />. The vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540018.png" />, lying in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540020.png" /> is the natural parameter on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540021.png" />, is called the vector of normal curvature of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540022.png" /> in the direction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540023.png" />. The end points of the vectors of normal curvature form the ellipse of normal curvature.
+
<!--
 +
e0354001.png
 +
$#A+1 = 41 n = 0
 +
$#C+1 = 41 : ~/encyclopedia/old_files/data/E035/E.0305400 Ellipse of normal curvature
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
For a two-dimensional surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540024.png" /> with non-zero Gaussian curvature in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540025.png" /> to lie in a certain three-dimensional subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540026.png" /> it is necessary and sufficient that its ellipse of normal curvature at all points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540027.png" /> degenerates to a segment passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540028.png" /> (see ).
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Similarly one defines the indicatrix of curvature for a submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540029.png" /> of arbitrary dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540030.png" />. It is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540031.png" />-dimensional algebraic surface of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540032.png" />. The vectors of normal curvature form a cone which, together with the tangent space to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540033.png" />, determines a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540034.png" />, the so-called domain of curvature of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540035.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540036.png" />. The dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540037.png" /> of this subspace satisfies
+
A geometrical construction characterizing the distribution of the curvatures at a certain point on a regular surface  $  M  ^ {2} $
 +
in the  $  n $-
 +
dimensional Euclidean space  $  E  ^ {n} $.  
 +
Let  $  P $
 +
be a point on a surface  $  M  ^ {2} $
 +
and let  $  N _ {\mathbf l }  $
 +
be the  $  ( n - 1) $-
 +
dimensional subspace containing the normal space  $  N $
 +
to  $  M  ^ {2} $
 +
at  $  P $
 +
and the tangent to $  M  ^ {2} $
 +
at  $  P $
 +
in the direction  $  \mathbf l $.  
 +
The section  $  \gamma _ {\mathbf l }  $
 +
of  $  M  ^ {2} $
 +
by  $  N _ {\mathbf l }  $
 +
is called a normal section at  $  P $.  
 +
The vector  $  d  ^ {2} \gamma _ {\mathbf l }  /ds  ^ {2} $,  
 +
lying in  $  N $,  
 +
where  $  s $
 +
is the natural parameter on  $  \gamma _ {\mathbf l }  $,
 +
is called the vector of normal curvature of $  M  ^ {2} $
 +
in the direction  $  \mathbf l $.  
 +
The end points of the vectors of normal curvature form the ellipse of normal curvature.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540038.png" /></td> </tr></table>
+
For a two-dimensional surface  $  M  ^ {2} $
 +
with non-zero Gaussian curvature in  $  E  ^ {n} $
 +
to lie in a certain three-dimensional subspace  $  E  ^ {3} $
 +
it is necessary and sufficient that its ellipse of normal curvature at all points  $  P $
 +
degenerates to a segment passing through  $  P $(
 +
see ).
  
Points at which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540039.png" /> are called axial, those at which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540040.png" /> — planar, and those at which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540041.png" /> — spatial. Sometimes one considers for submanifolds of large codimension the [[Dupin indicatrix|Dupin indicatrix]], the construction of which is completely analogous to that of the Dupin indicatrix for a surface in three-dimensional space.
+
Similarly one defines the indicatrix of curvature for a submanifold  $  M  ^ {m} $
 +
of arbitrary dimension  $  m $.
 +
It is an  $  ( m - 1) $-
 +
dimensional algebraic surface of order  $  2  ^ {m-} 1 $.
 +
The vectors of normal curvature form a cone which, together with the tangent space to  $  M  ^ {m} $,
 +
determines a subspace  $  E ^ {m _ {1} } $,
 +
the so-called domain of curvature of  $  M  ^ {m} $
 +
at  $  P $.
 +
The dimension  $  m _ {1} $
 +
of this subspace satisfies
 +
 
 +
$$
 +
m _ {1}  \leq  \
 +
{
 +
\frac{m ( m + 3) }{2}
 +
} ,\ \
 +
m _ {1}  \leq  n.
 +
$$
 +
 
 +
Points at which $  m _ {1} = m + 1 $
 +
are called axial, those at which $  m _ {1} = m + 2 $—  
 +
planar, and those at which $  m _ {1} = m + 3 $—  
 +
spatial. Sometimes one considers for submanifolds of large codimension the [[Dupin indicatrix|Dupin indicatrix]], the construction of which is completely analogous to that of the Dupin indicatrix for a surface in three-dimensional space.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.A. Schouten,  D.J. Struik,  "Einführung in die neueren Methoden der Differentialgeometrie" , '''2''' , Noordhoff  (1935)</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top">  Yu.A. Aminov,  "Torsion of two-dimensional surfaces in Euclidean spaces"  ''Ukrain. Geom. Sb.'' , '''17'''  (1975)  pp. 3–14  (In Russian)</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top">  Yu.A. Aminov,  "An analogue of Ricci's condition for a minimal variety in a Riemannian space"  ''Ukrain. Geom. Sb.'' , '''17'''  (1975)  pp. 15–22; 144  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.A. Schouten,  D.J. Struik,  "Einführung in die neueren Methoden der Differentialgeometrie" , '''2''' , Noordhoff  (1935)</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top">  Yu.A. Aminov,  "Torsion of two-dimensional surfaces in Euclidean spaces"  ''Ukrain. Geom. Sb.'' , '''17'''  (1975)  pp. 3–14  (In Russian)</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top">  Yu.A. Aminov,  "An analogue of Ricci's condition for a minimal variety in a Riemannian space"  ''Ukrain. Geom. Sb.'' , '''17'''  (1975)  pp. 15–22; 144  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. do Carmo,  "Differential geometry of curves and surfaces" , Prentice-Hall  (1976)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  B. O'Neill,  "Elementary differential geometry" , Acad. Press  (1966)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  S. Kobayashi,  K. Nomizu,  "Foundations of differential geometry" , '''1–2''' , Interscience  (1969)  pp. Chapt. 7</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M. Spivak,  "A comprehensive introduction to differential geometry" , '''3''' , Publish or Perish  pp. 1–5</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. do Carmo,  "Differential geometry of curves and surfaces" , Prentice-Hall  (1976)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  B. O'Neill,  "Elementary differential geometry" , Acad. Press  (1966)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  S. Kobayashi,  K. Nomizu,  "Foundations of differential geometry" , '''1–2''' , Interscience  (1969)  pp. Chapt. 7</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M. Spivak,  "A comprehensive introduction to differential geometry" , '''3''' , Publish or Perish  pp. 1–5</TD></TR></table>

Latest revision as of 19:37, 5 June 2020


A geometrical construction characterizing the distribution of the curvatures at a certain point on a regular surface $ M ^ {2} $ in the $ n $- dimensional Euclidean space $ E ^ {n} $. Let $ P $ be a point on a surface $ M ^ {2} $ and let $ N _ {\mathbf l } $ be the $ ( n - 1) $- dimensional subspace containing the normal space $ N $ to $ M ^ {2} $ at $ P $ and the tangent to $ M ^ {2} $ at $ P $ in the direction $ \mathbf l $. The section $ \gamma _ {\mathbf l } $ of $ M ^ {2} $ by $ N _ {\mathbf l } $ is called a normal section at $ P $. The vector $ d ^ {2} \gamma _ {\mathbf l } /ds ^ {2} $, lying in $ N $, where $ s $ is the natural parameter on $ \gamma _ {\mathbf l } $, is called the vector of normal curvature of $ M ^ {2} $ in the direction $ \mathbf l $. The end points of the vectors of normal curvature form the ellipse of normal curvature.

For a two-dimensional surface $ M ^ {2} $ with non-zero Gaussian curvature in $ E ^ {n} $ to lie in a certain three-dimensional subspace $ E ^ {3} $ it is necessary and sufficient that its ellipse of normal curvature at all points $ P $ degenerates to a segment passing through $ P $( see ).

Similarly one defines the indicatrix of curvature for a submanifold $ M ^ {m} $ of arbitrary dimension $ m $. It is an $ ( m - 1) $- dimensional algebraic surface of order $ 2 ^ {m-} 1 $. The vectors of normal curvature form a cone which, together with the tangent space to $ M ^ {m} $, determines a subspace $ E ^ {m _ {1} } $, the so-called domain of curvature of $ M ^ {m} $ at $ P $. The dimension $ m _ {1} $ of this subspace satisfies

$$ m _ {1} \leq \ { \frac{m ( m + 3) }{2} } ,\ \ m _ {1} \leq n. $$

Points at which $ m _ {1} = m + 1 $ are called axial, those at which $ m _ {1} = m + 2 $— planar, and those at which $ m _ {1} = m + 3 $— spatial. Sometimes one considers for submanifolds of large codimension the Dupin indicatrix, the construction of which is completely analogous to that of the Dupin indicatrix for a surface in three-dimensional space.

References

[1] J.A. Schouten, D.J. Struik, "Einführung in die neueren Methoden der Differentialgeometrie" , 2 , Noordhoff (1935)
[2a] Yu.A. Aminov, "Torsion of two-dimensional surfaces in Euclidean spaces" Ukrain. Geom. Sb. , 17 (1975) pp. 3–14 (In Russian)
[2b] Yu.A. Aminov, "An analogue of Ricci's condition for a minimal variety in a Riemannian space" Ukrain. Geom. Sb. , 17 (1975) pp. 15–22; 144 (In Russian)

Comments

References

[a1] M. do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976)
[a2] B. O'Neill, "Elementary differential geometry" , Acad. Press (1966)
[a3] S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 1–2 , Interscience (1969) pp. Chapt. 7
[a4] M. Spivak, "A comprehensive introduction to differential geometry" , 3 , Publish or Perish pp. 1–5
How to Cite This Entry:
Ellipse of normal curvature. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ellipse_of_normal_curvature&oldid=11996
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article