Namespaces
Variants
Actions

Difference between revisions of "Differential equation, partial, of the second order"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An equation containing at least one derivative of the second order of the unknown function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d0320201.png" /> and not containing derivatives of higher orders. For instance, a linear equation of the second order has the form
+
<!--
 +
d0320201.png
 +
$#A+1 = 75 n = 0
 +
$#C+1 = 75 : ~/encyclopedia/old_files/data/D032/D.0302020 Differential equation, partial, of the second order
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d0320202.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d0320203.png" /></td> </tr></table>
+
An equation containing at least one derivative of the second order of the unknown function  $  u $
 +
and not containing derivatives of higher orders. For instance, a linear equation of the second order has the form
  
where the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d0320204.png" /> belongs to some domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d0320205.png" /> in which the real-valued functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d0320206.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d0320207.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d0320208.png" /> are defined, and at each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d0320209.png" /> at least one of the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202010.png" /> is non-zero. For any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202011.png" /> there exists a non-singular transformation of the independent variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202012.png" /> such that equation (1) assumes the following form in the new coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202013.png" />:
+
$$ \tag{1 }
 +
\sum _ {i , j= 1 } ^ { n }  a _ {ij} ( x)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
\frac{\partial  ^ {2} u ( x) }{\partial  x _ {i} \partial  x _ {j} }
 +
+ \sum _
 +
{i = 1 } ^ { n }  b _ {i} ( x)
 +
\frac{\partial  u ( x) }{\partial  x _ {i} }
 +
+
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202015.png" /></td> </tr></table>
+
$$
 +
+
 +
c ( x) u ( x) + f ( x)  = 0 ,
 +
$$
  
where the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202016.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202017.png" /> are equal to zero if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202018.png" /> and are equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202019.png" /> or to zero if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202020.png" />. Equation (2) is known as the canonical form of equation (1) at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202021.png" />.
+
where the point $  x = ( x _ {1} \dots x _ {n} ) $
 +
belongs to some domain  $  \Omega \subset  \mathbf R  ^ {n} $
 +
in which the real-valued functions  $  a _ {ij} ( x) $,
 +
$  b _ {i} ( x) $
 +
and $  c ( x) $
 +
are defined, and at each point  $  x \in \Omega $
 +
at least one of the coefficients  $  a _ {ij} ( x) $
 +
is non-zero. For any point  $  x _ {0} \in \Omega $
 +
there exists a non-singular transformation of the independent variables  $  \xi = \xi ( x) $
 +
such that equation (1) assumes the following form in the new coordinates  $  \xi = ( \xi _ {1} \dots \xi _ {n} ) $:
  
The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202022.png" /> and the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202023.png" /> of coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202024.png" /> in equation (2) which are, respectively, positive and negative at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202025.png" /> depend only on the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202026.png" /> of equation (1). As a consequence, differential equations (1) can be classified as follows. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202027.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202028.png" />, equation (1) is called elliptic at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202029.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202031.png" />, or if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202033.png" />, it is called hyperbolic; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202035.png" />, it is called ultra-hyperbolic. The equation is called parabolic in the wide sense at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202036.png" /> if at least one of the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202037.png" /> is zero at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202039.png" />; it is called parabolic at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202040.png" /> if only one of the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202041.png" /> is zero at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202042.png" /> (say <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202043.png" />), while all the remaining coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202044.png" /> have the same sign and the coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202045.png" />.
+
$$ \tag{2 }
 +
\sum _ {i , j = 1 } ^ { n }  a _ {ij}  ^ {*} ( \xi )  
 +
\frac{\partial  ^ {2}
 +
u ( \xi ) }{\partial  \xi _ {i} \partial  \xi _ {j} }
 +
+ \sum _ {i = 1
 +
} ^ { n }  b _ {i}  ^ {*} ( \xi )  
 +
\frac{\partial  u }{\partial  \xi _ {i} }
 +
+
 +
$$
  
In the case of two independent variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202046.png" /> it is more convenient to define the type of an equation by the function
+
$$
 +
+
 +
c  ^ {*} ( \xi ) u ( \xi ) + f  ^ {*} ( \xi )  = 0 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202047.png" /></td> </tr></table>
+
where the coefficients  $  a _ {ij}  ^ {*} ( \xi ) $
 +
at the point  $  \xi _ {0} = \xi ( x _ {0} ) $
 +
are equal to zero if  $  i \neq j $
 +
and are equal to  $  \pm  1 $
 +
or to zero if  $  i = j $.  
 +
Equation (2) is known as the canonical form of equation (1) at the point  $  x _ {0} $.
  
Thus, equation (1) is elliptic at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202048.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202049.png" />; it is hyperbolic if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202050.png" /> and is parabolic in the wide sense if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202051.png" />.
+
The number  $  k $
 +
and the number  $  l $
 +
of coefficients  $  a _ {ii}  ^ {*} ( \xi ) $
 +
in equation (2) which are, respectively, positive and negative at the point  $  \xi _ {0} $
 +
depend only on the coefficients  $  a _ {ij} ( x) $
 +
of equation (1). As a consequence, differential equations (1) can be classified as follows. If  $  k = n $
 +
or  $  l = n $,
 +
equation (1) is called elliptic at the point $  x _ {0} $;
 +
if  $  k = n - 1 $
 +
and  $  l = 1 $,
 +
or if $  k = 1 $
 +
and  $  l = n - 1 $,
 +
it is called hyperbolic; if $  k + l = n $
 +
and  $  1 < k < n - 1 $,
 +
it is called ultra-hyperbolic. The equation is called parabolic in the wide sense at the point  $  x _ {0} $
 +
if at least one of the coefficients  $  a _ {i i }  ^ {*} ( \xi ) $
 +
is zero at the point  $  \xi _ {0} = \xi ( x _ {0} ) $
 +
and  $  k + l < n $;
 +
it is called parabolic at the point  $  x _ {0} $
 +
if only one of the coefficients  $  a _ {ii}  ^ {*} ( \xi ) $
 +
is zero at the point  $  \xi _ {0} $(
 +
say  $  a _ {11}  ^ {*} ( \xi _ {0} ) = 0 $),
 +
while all the remaining coefficients  $  a _ {ii}  ^ {*} ( \xi ) $
 +
have the same sign and the coefficient  $  b _ {1}  ^ {*} ( \xi _ {0} ) \neq 0 $.
  
An equation is called elliptic, hyperbolic, etc., in a domain, if it is, respectively, elliptic, hyperbolic, etc., at each point of this domain. For instance, the Tricomi equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202052.png" /> is elliptic if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202053.png" />; it is hyperbolic if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202054.png" />; and it is parabolic in the wide sense if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202055.png" />.
+
In the case of two independent variables  $  ( n = 2 ) $
 +
it is more convenient to define the type of an equation by the function
  
The transformation of variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202056.png" /> which converts equation (1) to canonical form at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202057.png" /> depends on that point. If there are three or more independent variables, there is, in general, no non-singular transformation of equation (1) to canonical form at all points of some neighbourhood of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202058.png" /> at the same time, i.e. to the form
+
$$
 +
\Delta ( x) = a _ {11} a _ {22} - a _ {12} a _ {21} .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202059.png" /></td> </tr></table>
+
Thus, equation (1) is elliptic at the point  $  x _ {0} $
 +
if  $  \Delta ( x _ {0} ) > 0 $;  
 +
it is hyperbolic if  $  \Delta ( x _ {0} ) < 0 $
 +
and is parabolic in the wide sense if  $  \Delta ( x _ {0} ) = 0 $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202060.png" /></td> </tr></table>
+
An equation is called elliptic, hyperbolic, etc., in a domain, if it is, respectively, elliptic, hyperbolic, etc., at each point of this domain. For instance, the Tricomi equation  $  yu _ {xx} + u _ {yy} = 0 $
 +
is elliptic if  $  y > 0 $;  
 +
it is hyperbolic if  $  y < 0 $;  
 +
and it is parabolic in the wide sense if  $  y = 0 $.
  
In the case of two independent variables (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202061.png" />), on the other hand, it is possible to bring equation (1) to canonical form by imposing certain conditions on the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202062.png" />; as an example, the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202063.png" /> must be continuously differentiable up to the second order inclusive, and equation (1) must be of one type in a certain neighbourhood of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202064.png" />.
+
The transformation of variables  $  \xi = \xi ( x) $
 +
which converts equation (1) to canonical form at the point  $  x _ {0} $
 +
depends on that point. If there are three or more independent variables, there is, in general, no non-singular transformation of equation (1) to canonical form at all points of some neighbourhood of the point  $  x _ {0} $
 +
at the same time, i.e. to the form
 +
 
 +
$$
 +
\sum _ {i = 1 } ^ { k } 
 +
\frac{\partial  ^ {2} u ( \xi ) }{\partial  \xi _ {i}  ^ {2} }
 +
- \sum _ { i= } k+ 1 ^ { k+ }  l
 +
\frac{\partial  ^ {2} u ( \xi ) }{\partial
 +
\xi _ {i}  ^ {2} }
 +
+
 +
\sum _ { i= } 1 ^ { n }  b _ {i}  ^ {*} ( \xi )
 +
\frac{\partial  u ( \xi ) }{
 +
\partial  \xi _ {j} }
 +
+
 +
$$
 +
 
 +
$$
 +
+ c  ^ {*} ( \xi ) u ( \xi ) + f  ^ {*} ( \xi )  =  0 .
 +
$$
 +
 
 +
In the case of two independent variables ( $  n = 2 $),  
 +
on the other hand, it is possible to bring equation (1) to canonical form by imposing certain conditions on the coefficients $  a _ {ij} ( x) $;  
 +
as an example, the functions $  a _ {ij} ( x) $
 +
must be continuously differentiable up to the second order inclusive, and equation (1) must be of one type in a certain neighbourhood of the point $  x _ {0} $.
  
 
Let
 
Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202065.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
\Phi ( x , u , u _ {x _ {1}  } \dots u _ {x _ {n}  } ,
 +
u _ {x _ {1}  x _ {1} } , u _ {x _ {1}  x _ {2} } \dots u _ {x _ {n}  x _ {n} } )  = 0
 +
$$
  
be a non-linear equation of the second order, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202066.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202067.png" />, and let the derivatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202068.png" /> exist at each point in the domain of definition of the real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202069.png" />; further, let the condition
+
be a non-linear equation of the second order, where $  u _ {x _ {i}  } = \partial  u / \partial  x _ {i} $,  
 +
$  u _ {x _ {i}  x _ {j} } = \partial  ^ {2} u / \partial  x _ {i} \partial  x _ {j} $,  
 +
and let the derivatives $  \partial  \Phi / \partial  u _ {x _ {i}  x _ {j} } $
 +
exist at each point in the domain of definition of the real-valued function $  \Phi $;  
 +
further, let the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202070.png" /></td> </tr></table>
+
$$
 +
\sum _ {i , j = 1 } ^ { n }  \left (
 +
\frac{\partial  \Phi }{\partial  u _ {x _ {i}  x _ {j} } }
 +
\right )  ^ {2}  \neq  0
 +
$$
  
be satisfied. In the classification of non-linear equations of the type (3) one determines a certain solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202071.png" /> of this equation and one considers the linear equation
+
be satisfied. In the classification of non-linear equations of the type (3) one determines a certain solution $  u  ^ {*} ( x) $
 +
of this equation and one considers the linear equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202072.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
\sum _ {i , j = 1 } ^ { n }  a _ {ij} ( x)
 +
\frac{\partial  ^ {2} u ( x) }{\partial  x _ {i} \partial  x _ {j} }
 +
  = 0
 +
$$
  
 
with coefficients
 
with coefficients
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202073.png" /></td> </tr></table>
+
$$
 +
a _ {ij} ( x)  = \left .
 +
\frac{\partial  \Phi }{\partial  u _ {x _ {i}  x _ {j} }
 +
}
 +
\right | _ {u = u  ^ {*}  ( x) } .
 +
$$
  
For a given solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202074.png" />, equation (3) is said to be elliptic, hyperbolic, etc., at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202075.png" /> (or in a domain) if equation (4) is elliptic, hyperbolic, etc., respectively, at this point (or in this domain).
+
For a given solution $  u  ^ {*} ( x) $,  
 +
equation (3) is said to be elliptic, hyperbolic, etc., at a point $  x _ {0} $(
 +
or in a domain) if equation (4) is elliptic, hyperbolic, etc., respectively, at this point (or in this domain).
  
 
A very wide class of physical problems is reduced to solving differential equations of the second order. See, for example, [[Wave equation|Wave equation]]; [[Telegraph equation|Telegraph equation]]; [[Thermal-conductance equation|Thermal-conductance equation]]; [[Tricomi equation|Tricomi equation]]; [[Laplace equation|Laplace equation]]; [[Poisson equation|Poisson equation]]; [[Helmholtz equation|Helmholtz equation]].
 
A very wide class of physical problems is reduced to solving differential equations of the second order. See, for example, [[Wave equation|Wave equation]]; [[Telegraph equation|Telegraph equation]]; [[Thermal-conductance equation|Thermal-conductance equation]]; [[Tricomi equation|Tricomi equation]]; [[Laplace equation|Laplace equation]]; [[Poisson equation|Poisson equation]]; [[Helmholtz equation|Helmholtz equation]].
 
 
  
 
====Comments====
 
====Comments====
 
See also [[Differential equation, partial|Differential equation, partial]].
 
See also [[Differential equation, partial|Differential equation, partial]].

Latest revision as of 17:33, 5 June 2020


An equation containing at least one derivative of the second order of the unknown function $ u $ and not containing derivatives of higher orders. For instance, a linear equation of the second order has the form

$$ \tag{1 } \sum _ {i , j= 1 } ^ { n } a _ {ij} ( x) \frac{\partial ^ {2} u ( x) }{\partial x _ {i} \partial x _ {j} } + \sum _ {i = 1 } ^ { n } b _ {i} ( x) \frac{\partial u ( x) }{\partial x _ {i} } + $$

$$ + c ( x) u ( x) + f ( x) = 0 , $$

where the point $ x = ( x _ {1} \dots x _ {n} ) $ belongs to some domain $ \Omega \subset \mathbf R ^ {n} $ in which the real-valued functions $ a _ {ij} ( x) $, $ b _ {i} ( x) $ and $ c ( x) $ are defined, and at each point $ x \in \Omega $ at least one of the coefficients $ a _ {ij} ( x) $ is non-zero. For any point $ x _ {0} \in \Omega $ there exists a non-singular transformation of the independent variables $ \xi = \xi ( x) $ such that equation (1) assumes the following form in the new coordinates $ \xi = ( \xi _ {1} \dots \xi _ {n} ) $:

$$ \tag{2 } \sum _ {i , j = 1 } ^ { n } a _ {ij} ^ {*} ( \xi ) \frac{\partial ^ {2} u ( \xi ) }{\partial \xi _ {i} \partial \xi _ {j} } + \sum _ {i = 1 } ^ { n } b _ {i} ^ {*} ( \xi ) \frac{\partial u }{\partial \xi _ {i} } + $$

$$ + c ^ {*} ( \xi ) u ( \xi ) + f ^ {*} ( \xi ) = 0 , $$

where the coefficients $ a _ {ij} ^ {*} ( \xi ) $ at the point $ \xi _ {0} = \xi ( x _ {0} ) $ are equal to zero if $ i \neq j $ and are equal to $ \pm 1 $ or to zero if $ i = j $. Equation (2) is known as the canonical form of equation (1) at the point $ x _ {0} $.

The number $ k $ and the number $ l $ of coefficients $ a _ {ii} ^ {*} ( \xi ) $ in equation (2) which are, respectively, positive and negative at the point $ \xi _ {0} $ depend only on the coefficients $ a _ {ij} ( x) $ of equation (1). As a consequence, differential equations (1) can be classified as follows. If $ k = n $ or $ l = n $, equation (1) is called elliptic at the point $ x _ {0} $; if $ k = n - 1 $ and $ l = 1 $, or if $ k = 1 $ and $ l = n - 1 $, it is called hyperbolic; if $ k + l = n $ and $ 1 < k < n - 1 $, it is called ultra-hyperbolic. The equation is called parabolic in the wide sense at the point $ x _ {0} $ if at least one of the coefficients $ a _ {i i } ^ {*} ( \xi ) $ is zero at the point $ \xi _ {0} = \xi ( x _ {0} ) $ and $ k + l < n $; it is called parabolic at the point $ x _ {0} $ if only one of the coefficients $ a _ {ii} ^ {*} ( \xi ) $ is zero at the point $ \xi _ {0} $( say $ a _ {11} ^ {*} ( \xi _ {0} ) = 0 $), while all the remaining coefficients $ a _ {ii} ^ {*} ( \xi ) $ have the same sign and the coefficient $ b _ {1} ^ {*} ( \xi _ {0} ) \neq 0 $.

In the case of two independent variables $ ( n = 2 ) $ it is more convenient to define the type of an equation by the function

$$ \Delta ( x) = a _ {11} a _ {22} - a _ {12} a _ {21} . $$

Thus, equation (1) is elliptic at the point $ x _ {0} $ if $ \Delta ( x _ {0} ) > 0 $; it is hyperbolic if $ \Delta ( x _ {0} ) < 0 $ and is parabolic in the wide sense if $ \Delta ( x _ {0} ) = 0 $.

An equation is called elliptic, hyperbolic, etc., in a domain, if it is, respectively, elliptic, hyperbolic, etc., at each point of this domain. For instance, the Tricomi equation $ yu _ {xx} + u _ {yy} = 0 $ is elliptic if $ y > 0 $; it is hyperbolic if $ y < 0 $; and it is parabolic in the wide sense if $ y = 0 $.

The transformation of variables $ \xi = \xi ( x) $ which converts equation (1) to canonical form at the point $ x _ {0} $ depends on that point. If there are three or more independent variables, there is, in general, no non-singular transformation of equation (1) to canonical form at all points of some neighbourhood of the point $ x _ {0} $ at the same time, i.e. to the form

$$ \sum _ {i = 1 } ^ { k } \frac{\partial ^ {2} u ( \xi ) }{\partial \xi _ {i} ^ {2} } - \sum _ { i= } k+ 1 ^ { k+ } l \frac{\partial ^ {2} u ( \xi ) }{\partial \xi _ {i} ^ {2} } + \sum _ { i= } 1 ^ { n } b _ {i} ^ {*} ( \xi ) \frac{\partial u ( \xi ) }{ \partial \xi _ {j} } + $$

$$ + c ^ {*} ( \xi ) u ( \xi ) + f ^ {*} ( \xi ) = 0 . $$

In the case of two independent variables ( $ n = 2 $), on the other hand, it is possible to bring equation (1) to canonical form by imposing certain conditions on the coefficients $ a _ {ij} ( x) $; as an example, the functions $ a _ {ij} ( x) $ must be continuously differentiable up to the second order inclusive, and equation (1) must be of one type in a certain neighbourhood of the point $ x _ {0} $.

Let

$$ \tag{3 } \Phi ( x , u , u _ {x _ {1} } \dots u _ {x _ {n} } , u _ {x _ {1} x _ {1} } , u _ {x _ {1} x _ {2} } \dots u _ {x _ {n} x _ {n} } ) = 0 $$

be a non-linear equation of the second order, where $ u _ {x _ {i} } = \partial u / \partial x _ {i} $, $ u _ {x _ {i} x _ {j} } = \partial ^ {2} u / \partial x _ {i} \partial x _ {j} $, and let the derivatives $ \partial \Phi / \partial u _ {x _ {i} x _ {j} } $ exist at each point in the domain of definition of the real-valued function $ \Phi $; further, let the condition

$$ \sum _ {i , j = 1 } ^ { n } \left ( \frac{\partial \Phi }{\partial u _ {x _ {i} x _ {j} } } \right ) ^ {2} \neq 0 $$

be satisfied. In the classification of non-linear equations of the type (3) one determines a certain solution $ u ^ {*} ( x) $ of this equation and one considers the linear equation

$$ \tag{4 } \sum _ {i , j = 1 } ^ { n } a _ {ij} ( x) \frac{\partial ^ {2} u ( x) }{\partial x _ {i} \partial x _ {j} } = 0 $$

with coefficients

$$ a _ {ij} ( x) = \left . \frac{\partial \Phi }{\partial u _ {x _ {i} x _ {j} } } \right | _ {u = u ^ {*} ( x) } . $$

For a given solution $ u ^ {*} ( x) $, equation (3) is said to be elliptic, hyperbolic, etc., at a point $ x _ {0} $( or in a domain) if equation (4) is elliptic, hyperbolic, etc., respectively, at this point (or in this domain).

A very wide class of physical problems is reduced to solving differential equations of the second order. See, for example, Wave equation; Telegraph equation; Thermal-conductance equation; Tricomi equation; Laplace equation; Poisson equation; Helmholtz equation.

Comments

See also Differential equation, partial.

How to Cite This Entry:
Differential equation, partial, of the second order. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Differential_equation,_partial,_of_the_second_order&oldid=46677
This article was adapted from an original article by A.K. Gushchin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article