Namespaces
Variants
Actions

Difference between revisions of "Cramer rule"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
If the determinant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026990/c0269901.png" /> of a square system of linear equations
+
<!--
 +
c0269901.png
 +
$#A+1 = 7 n = 0
 +
$#C+1 = 7 : ~/encyclopedia/old_files/data/C026/C.0206990 Cramer rule
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026990/c0269902.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
If the determinant  $  D $
 +
of a square system of linear equations
 +
 
 +
$$
 +
\begin{array}{c}
 +
 
 +
a _ {11} x _ {1} + \dots + a _ {1n} x _ {n}  = b _ {1} ,
 +
\\
 +
 
 +
{\dots \dots \dots \dots }
 +
\\
 +
 
 +
a _ {n1} x _ {1} + \dots + a _ {nn} x _ {n}  = b _ {n}
 +
\end{array}
 +
 
 +
$$
  
 
does not vanish, then the system has a unique solution. This solution is given by the formulas
 
does not vanish, then the system has a unique solution. This solution is given by the formulas
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026990/c0269903.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
x _ {k}  = \
  
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026990/c0269904.png" /> is the determinant obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026990/c0269905.png" /> when the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026990/c0269906.png" />-th column is replaced by the column of the free terms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026990/c0269907.png" />. Formulas (*) are known as Cramer's formulas. They have been found by G. Cramer (see [[#References|[1]]]).
+
\frac{D _ {k} }{D}
 +
,\ \
 +
k = 1 \dots n.
 +
$$
 +
 
 +
Here  $  D _ {k} $
 +
is the determinant obtained from $  D $
 +
when the $  k $-
 +
th column is replaced by the column of the free terms $  b _ {1} \dots b _ {n} $.  
 +
Formulas (*) are known as Cramer's formulas. They have been found by G. Cramer (see [[#References|[1]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. Cramer,  "Introduction à l'analyse des lignes courbes" , Geneva  (1750)  pp. 657</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.G. Kurosh,  "Higher algebra" , MIR  (1972)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. Cramer,  "Introduction à l'analyse des lignes courbes" , Geneva  (1750)  pp. 657</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.G. Kurosh,  "Higher algebra" , MIR  (1972)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T.M. Apostol,  "Calculus" , '''2''' , Wiley  (1969)  pp. 93</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T.M. Apostol,  "Calculus" , '''2''' , Wiley  (1969)  pp. 93</TD></TR></table>

Latest revision as of 17:31, 5 June 2020


If the determinant $ D $ of a square system of linear equations

$$ \begin{array}{c} a _ {11} x _ {1} + \dots + a _ {1n} x _ {n} = b _ {1} , \\ {\dots \dots \dots \dots } \\ a _ {n1} x _ {1} + \dots + a _ {nn} x _ {n} = b _ {n} \end{array} $$

does not vanish, then the system has a unique solution. This solution is given by the formulas

$$ \tag{* } x _ {k} = \ \frac{D _ {k} }{D} ,\ \ k = 1 \dots n. $$

Here $ D _ {k} $ is the determinant obtained from $ D $ when the $ k $- th column is replaced by the column of the free terms $ b _ {1} \dots b _ {n} $. Formulas (*) are known as Cramer's formulas. They have been found by G. Cramer (see [1]).

References

[1] G. Cramer, "Introduction à l'analyse des lignes courbes" , Geneva (1750) pp. 657
[2] A.G. Kurosh, "Higher algebra" , MIR (1972) (Translated from Russian)

Comments

References

[a1] T.M. Apostol, "Calculus" , 2 , Wiley (1969) pp. 93
How to Cite This Entry:
Cramer rule. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cramer_rule&oldid=14865
This article was adapted from an original article by I.V. Proskuryakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article