Namespaces
Variants
Actions

Difference between revisions of "Covering theorems"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
c0269701.png
 +
$#A+1 = 64 n = 0
 +
$#C+1 = 64 : ~/encyclopedia/old_files/data/C026/C.0206970 Covering theorems
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Theorems for various classes of regular functions that establish certain properties of sets that are entirely contained in the range of values of each function of the corresponding class. Below some basic covering theorems are presented (see also [[#References|[1]]]).
 
Theorems for various classes of regular functions that establish certain properties of sets that are entirely contained in the range of values of each function of the corresponding class. Below some basic covering theorems are presented (see also [[#References|[1]]]).
  
Theorem 1) If a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c0269701.png" /> is regular and univalent in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c0269702.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c0269703.png" />), then the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c0269704.png" /> is entirely covered by the image of the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c0269705.png" /> under the mapping of this function. On the circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c0269706.png" /> there are points not belonging to the image only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c0269707.png" /> has the form:
+
Theorem 1) If a function $  w = f( z) = z + a _ {2} z  ^ {2} + \dots $
 +
is regular and univalent in the disc $  | z | < 1 $(
 +
i.e. $  f \in S $),  
 +
then the disc $  | w | < 1/4 $
 +
is entirely covered by the image of the disc $  | z | < 1 $
 +
under the mapping of this function. On the circle $  | w | = 1/4 $
 +
there are points not belonging to the image only if $  f $
 +
has the form:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c0269708.png" /></td> </tr></table>
+
$$
 +
f( z)  =
 +
\frac{z}{( 1+ e ^ {i \alpha } z)  ^ {2} }
 +
,\ \
 +
0 \leq  \alpha < 2 \pi .
 +
$$
  
Theorem 2) If a meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c0269709.png" /> maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697010.png" /> univalently, then the entire boundary of the image lies in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697011.png" />.
+
Theorem 2) If a meromorphic function $  w = F( \zeta ) = \zeta + \alpha _ {0} + \alpha _ {1} / \zeta + \dots $
 +
maps $  | \zeta | > 1 $
 +
univalently, then the entire boundary of the image lies in the disc $  | w - \alpha _ {0} | \leq  2 $.
  
Theorem 3) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697012.png" />, then at least one of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697013.png" /> points nearest to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697014.png" /> on the boundary of the image of the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697015.png" /> under the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697016.png" /> lying on any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697017.png" /> rays arising from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697018.png" /> at equal angles will have distance from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697019.png" /> not less than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697020.png" />.
+
Theorem 3) If $  f \in S $,  
 +
then at least one of the $  n $
 +
points nearest to $  w = 0 $
 +
on the boundary of the image of the disc $  | z | < 1 $
 +
under the mapping $  w = f( z) $
 +
lying on any $  n $
 +
rays arising from $  w = 0 $
 +
at equal angles will have distance from $  w = 0 $
 +
not less than $  ( 1/4)  ^ {1/n} $.
  
Theorem 4) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697021.png" />, the image of the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697022.png" /> under the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697023.png" /> contains a set consisting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697024.png" /> open rectilinear segments with the sum of the lengths not less than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697025.png" />, which emanate from the origin under equal angles of value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697026.png" />.
+
Theorem 4) If $  f \in S $,  
 +
the image of the disc $  | z | < 1 $
 +
under the mapping $  w = f( z) $
 +
contains a set consisting of $  n $
 +
open rectilinear segments with the sum of the lengths not less than $  n $,  
 +
which emanate from the origin under equal angles of value $  2 \pi / n $.
  
For functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697027.png" /> that in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697028.png" /> satisfy the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697030.png" />, there are covering theorems analogous to theorems 1 and 3 (with corresponding constants). The covering theorems 1 and 3 can also be transferred to the class of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697031.png" /> that are regular and univalent in an annulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697032.png" />, that map it into regions lying in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697033.png" />, and that map the circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697034.png" /> into the circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697035.png" />.
+
For functions $  f \in S $
 +
that in the disc $  | z | < 1 $
 +
satisfy the inequality $  | f( z) | < M $,  
 +
$  M \geq  1 $,  
 +
there are covering theorems analogous to theorems 1 and 3 (with corresponding constants). The covering theorems 1 and 3 can also be transferred to the class of functions $  w = f( z) $
 +
that are regular and univalent in an annulus $  1 < | z | < r $,  
 +
that map it into regions lying in $  | w | > 1 $,  
 +
and that map the circle $  | z | = 1 $
 +
into the circle $  | w | = 1 $.
  
For the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697036.png" /> of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697037.png" /> regular in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697038.png" />, there is no disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697040.png" />, that is entirely covered by the values of each of the functions in this class. For the functions
+
For the class $  R $
 +
of functions $  w = f( z) = z + a _ {2} z  ^ {2} + \dots $
 +
regular in the disc $  | z | < 1 $,  
 +
there is no disc $  | w | < \rho $,
 +
$  \rho > 0 $,  
 +
that is entirely covered by the values of each of the functions in this class. For the functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697041.png" /></td> </tr></table>
+
$$
 +
= F( z)  = z  ^ {q} + a _ {2} z  ^ {q+} 1 + \dots ,\ \
 +
q \geq  1,
 +
$$
  
that are regular in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697042.png" />, each image of this disc entirely covers a certain segment of arbitrary given slope, containing the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697043.png" /> inside it and of length not less than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697044.png" />, where the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697045.png" /> cannot be increased without imposing additional restrictions. In this class of functions, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697046.png" /> in the annulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697047.png" />, each image of the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697048.png" /> entirely covers the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697049.png" />, but does not always cover a greater disc with its centre at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697050.png" />.
+
that are regular in $  | z | < 1 $,  
 +
each image of this disc entirely covers a certain segment of arbitrary given slope, containing the point $  w = 0 $
 +
inside it and of length not less than $  A = 8 \pi  ^ {2} / \Gamma ^ { 4 } ( 1/4) = 0.45 \dots $,  
 +
where the number $  A $
 +
cannot be increased without imposing additional restrictions. In this class of functions, if $  F( z) \neq 0 $
 +
in the annulus $  0 < | z | < 1 $,  
 +
each image of the disc $  | z | < 1 $
 +
entirely covers the disc $  | w | < 1/16 $,  
 +
but does not always cover a greater disc with its centre at $  w = 0 $.
  
In the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697051.png" /> of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697052.png" />, regular in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697053.png" />, such that each value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697054.png" /> is taken at at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697055.png" /> points in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697056.png" /> one has an analogue of theorem 1 with corresponding disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697057.png" />. If moreover <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697058.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697059.png" />, the corresponding discs will be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697060.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697061.png" />. Analogous results apply for functions that are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697062.png" />-valent in the mean over a circle, over a region, etc. Covering theorem 3 can also be transferred to the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697063.png" />.
+
In the class $  S _ {p} $
 +
of functions $  f( z) = z  ^ {p} ( 1 + a _ {1} z + a _ {2} z  ^ {2} + \dots ) $,  
 +
regular in $  | z | < 1 $,  
 +
such that each value $  w $
 +
is taken at at most $  p $
 +
points in the disc $  | z | < 1 $
 +
one has an analogue of theorem 1 with corresponding disc $  | w | < 1/2  ^ {p+} 1 $.  
 +
If moreover $  a _ {1} = \dots = a _ {p-} 1 = 0 $
 +
or  $  a _ {1} = \dots = a _ {p} = 0 $,  
 +
the corresponding discs will be $  | w | < 1/4 $
 +
or $  | w | < 1/2 $.  
 +
Analogous results apply for functions that are $  p $-
 +
valent in the mean over a circle, over a region, etc. Covering theorem 3 can also be transferred to the class $  S _ {p} $.
  
 
See also Bloch's theorem in [[Bloch constant|Bloch constant]].
 
See also Bloch's theorem in [[Bloch constant|Bloch constant]].
Line 25: Line 100:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Theorem 1 is also called Koebe's <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697065.png" />-theorem. Covering theorems are related to exceptional values (i.e. values not taken by a function, cf. [[Exceptional value|Exceptional value]]). Besides Bloch's theorem one should mention Landau's theorems, and the related constants; cf. [[Landau theorems|Landau theorems]].
+
Theorem 1 is also called Koebe's $  {1 / 4 } $-
 +
theorem. Covering theorems are related to exceptional values (i.e. values not taken by a function, cf. [[Exceptional value|Exceptional value]]). Besides Bloch's theorem one should mention Landau's theorems, and the related constants; cf. [[Landau theorems|Landau theorems]].

Latest revision as of 17:31, 5 June 2020


Theorems for various classes of regular functions that establish certain properties of sets that are entirely contained in the range of values of each function of the corresponding class. Below some basic covering theorems are presented (see also [1]).

Theorem 1) If a function $ w = f( z) = z + a _ {2} z ^ {2} + \dots $ is regular and univalent in the disc $ | z | < 1 $( i.e. $ f \in S $), then the disc $ | w | < 1/4 $ is entirely covered by the image of the disc $ | z | < 1 $ under the mapping of this function. On the circle $ | w | = 1/4 $ there are points not belonging to the image only if $ f $ has the form:

$$ f( z) = \frac{z}{( 1+ e ^ {i \alpha } z) ^ {2} } ,\ \ 0 \leq \alpha < 2 \pi . $$

Theorem 2) If a meromorphic function $ w = F( \zeta ) = \zeta + \alpha _ {0} + \alpha _ {1} / \zeta + \dots $ maps $ | \zeta | > 1 $ univalently, then the entire boundary of the image lies in the disc $ | w - \alpha _ {0} | \leq 2 $.

Theorem 3) If $ f \in S $, then at least one of the $ n $ points nearest to $ w = 0 $ on the boundary of the image of the disc $ | z | < 1 $ under the mapping $ w = f( z) $ lying on any $ n $ rays arising from $ w = 0 $ at equal angles will have distance from $ w = 0 $ not less than $ ( 1/4) ^ {1/n} $.

Theorem 4) If $ f \in S $, the image of the disc $ | z | < 1 $ under the mapping $ w = f( z) $ contains a set consisting of $ n $ open rectilinear segments with the sum of the lengths not less than $ n $, which emanate from the origin under equal angles of value $ 2 \pi / n $.

For functions $ f \in S $ that in the disc $ | z | < 1 $ satisfy the inequality $ | f( z) | < M $, $ M \geq 1 $, there are covering theorems analogous to theorems 1 and 3 (with corresponding constants). The covering theorems 1 and 3 can also be transferred to the class of functions $ w = f( z) $ that are regular and univalent in an annulus $ 1 < | z | < r $, that map it into regions lying in $ | w | > 1 $, and that map the circle $ | z | = 1 $ into the circle $ | w | = 1 $.

For the class $ R $ of functions $ w = f( z) = z + a _ {2} z ^ {2} + \dots $ regular in the disc $ | z | < 1 $, there is no disc $ | w | < \rho $, $ \rho > 0 $, that is entirely covered by the values of each of the functions in this class. For the functions

$$ w = F( z) = z ^ {q} + a _ {2} z ^ {q+} 1 + \dots ,\ \ q \geq 1, $$

that are regular in $ | z | < 1 $, each image of this disc entirely covers a certain segment of arbitrary given slope, containing the point $ w = 0 $ inside it and of length not less than $ A = 8 \pi ^ {2} / \Gamma ^ { 4 } ( 1/4) = 0.45 \dots $, where the number $ A $ cannot be increased without imposing additional restrictions. In this class of functions, if $ F( z) \neq 0 $ in the annulus $ 0 < | z | < 1 $, each image of the disc $ | z | < 1 $ entirely covers the disc $ | w | < 1/16 $, but does not always cover a greater disc with its centre at $ w = 0 $.

In the class $ S _ {p} $ of functions $ f( z) = z ^ {p} ( 1 + a _ {1} z + a _ {2} z ^ {2} + \dots ) $, regular in $ | z | < 1 $, such that each value $ w $ is taken at at most $ p $ points in the disc $ | z | < 1 $ one has an analogue of theorem 1 with corresponding disc $ | w | < 1/2 ^ {p+} 1 $. If moreover $ a _ {1} = \dots = a _ {p-} 1 = 0 $ or $ a _ {1} = \dots = a _ {p} = 0 $, the corresponding discs will be $ | w | < 1/4 $ or $ | w | < 1/2 $. Analogous results apply for functions that are $ p $- valent in the mean over a circle, over a region, etc. Covering theorem 3 can also be transferred to the class $ S _ {p} $.

See also Bloch's theorem in Bloch constant.

References

[1] G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian)

Comments

Theorem 1 is also called Koebe's $ {1 / 4 } $- theorem. Covering theorems are related to exceptional values (i.e. values not taken by a function, cf. Exceptional value). Besides Bloch's theorem one should mention Landau's theorems, and the related constants; cf. Landau theorems.

How to Cite This Entry:
Covering theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Covering_theorems&oldid=46549
This article was adapted from an original article by G.K. Antonyuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article