Namespaces
Variants
Actions

Difference between revisions of "Clone"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing dots)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
''of an operation''
+
<!--
 +
c0225001.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/C022/C.0202500 Clone
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Any set of finitary operations of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c0225001.png" /> that is closed with respect to composition and contains all the projections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c0225002.png" />, defined by
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c0225003.png" /></td> </tr></table>
+
''of an operation''
  
for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c0225004.png" />-tuple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c0225005.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c0225006.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c0225007.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c0225008.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c0225009.png" /> is an arbitrary fixed set. By a composition of operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250011.png" /> one means the operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250012.png" /> defined by the formula
+
Any set of finitary operations of the form  $  \omega : A  ^ {n} \rightarrow A $
 +
that is closed with respect to composition and contains all the projections  $  \omega _ {n}  ^ {i} : A  ^ {n} \rightarrow A $,
 +
defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250013.png" /></td> </tr></table>
+
$$
 +
\omega _ {n}  ^ {i}
 +
( a _ {1}, \dots, a _ {i}, \dots, a _ {n} )  = a _ {i}  $$
  
for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250014.png" />, where the sets of variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250017.png" /> satisfy the equality
+
for any  $  n $-tuple  $  ( a _ {1}, \dots, a _ {n} ) $
 +
in  $  A  ^ {n} $,  
 +
where $  n \geq  1 $,
 +
$  i = 1 , 2, \dots $
 +
and  $  A $
 +
is an arbitrary fixed set. By a composition of operations  $  \omega _ {1} ( x _ {1}, \dots, x _ {j}, \dots, x _ {n} ) $
 +
and $  \omega _ {2} ( y _ {1}, \dots, y _ {m} ) $
 +
one means the operation  $  \omega _ {3} ( z _ {1}, \dots, z _ {l} ) $
 +
defined by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250018.png" /></td> </tr></table>
+
$$
 +
\omega _ {1} ( x _ {1}, \dots, x _ {j-1} ,\
 +
\omega _ {2} ( y _ {1}, \dots, y _ {m} ) ,\
 +
x _ {j+1}, \dots, x _ {n} )
 +
$$
  
 +
for some  $  j \leq  n $,
 +
where the sets of variables  $  X = \{ x _ {1}, \dots, x _ {j}, \dots, x _ {n} \} $,
 +
$  Y = \{ y _ {1}, \dots, y _ {m} \} $
 +
and  $  Z = \{ z _ {1}, \dots, z _ {l} \} $
 +
satisfy the equality
  
 +
$$
 +
Z  =  ( X \setminus  \{ x _ {j} \} ) \cup Y ,\ \
 +
m , l \geq  1.
 +
$$
  
 
====Comments====
 
====Comments====

Latest revision as of 06:39, 22 February 2022


of an operation

Any set of finitary operations of the form $ \omega : A ^ {n} \rightarrow A $ that is closed with respect to composition and contains all the projections $ \omega _ {n} ^ {i} : A ^ {n} \rightarrow A $, defined by

$$ \omega _ {n} ^ {i} ( a _ {1}, \dots, a _ {i}, \dots, a _ {n} ) = a _ {i} $$

for any $ n $-tuple $ ( a _ {1}, \dots, a _ {n} ) $ in $ A ^ {n} $, where $ n \geq 1 $, $ i = 1 , 2, \dots $ and $ A $ is an arbitrary fixed set. By a composition of operations $ \omega _ {1} ( x _ {1}, \dots, x _ {j}, \dots, x _ {n} ) $ and $ \omega _ {2} ( y _ {1}, \dots, y _ {m} ) $ one means the operation $ \omega _ {3} ( z _ {1}, \dots, z _ {l} ) $ defined by the formula

$$ \omega _ {1} ( x _ {1}, \dots, x _ {j-1} ,\ \omega _ {2} ( y _ {1}, \dots, y _ {m} ) ,\ x _ {j+1}, \dots, x _ {n} ) $$

for some $ j \leq n $, where the sets of variables $ X = \{ x _ {1}, \dots, x _ {j}, \dots, x _ {n} \} $, $ Y = \{ y _ {1}, \dots, y _ {m} \} $ and $ Z = \{ z _ {1}, \dots, z _ {l} \} $ satisfy the equality

$$ Z = ( X \setminus \{ x _ {j} \} ) \cup Y ,\ \ m , l \geq 1. $$

Comments

The name "clone" was invented by P. Hall. It first appeared in print in (the first edition of) [a1].

References

[a1] P.M. Cohn, "Universal algebra" , Reidel (1981)
How to Cite This Entry:
Clone. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Clone&oldid=15448
This article was adapted from an original article by V.B. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article